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Abstract—The proliferation of mobile computing has prompted WiFi-based indoor localization to be one of the most attractive and
promising techniques for ubiquitous applications. A primary concern for these technologies to be fully practical is to combat harsh indoor
environmental dynamics, especially for long-term deployment. Despite numerous research on WiFi fingerprint-based localization, the
problem of radio map adaptation has not been sufficiently studied and remains open. In this work, we propose AcMu, an automatic
and continuous radio map self-updating service for wireless indoor localization that exploits the static behaviors of mobile devices.
By accurately pinpointing mobile devices with a novel trajectory matching algorithm, we employ them as mobile reference points to
collect real-time RSS samples when they are static. With these fresh reference data, we adapt the complete radio map by learning
an underlying relationship of RSS dependency between different locations, which is expected to be relatively constant over time.
Extensive experiments for 20 days across 6 months demonstrate that AcMu effectively accommodates RSS variations over time and
derives accurate prediction of fresh radio map with average errors of less than 5dB, outperforming existing approaches. Moreover,
AcMu provides 2x improvement on localization accuracy by maintaining an up-to-date radio map.

Index Terms—WiFi fingerprints, radio map updating, indoor localization

1 INTRODUCTION

The past decade has witnessed the conceptualization
and development of various wireless indoor localization
techniques, including WiFi, RFID, acoustic signals, etc.
Due to the wide deployment and availability of WiFi
infrastructure, WiFi fingerprint-based indoor localiza-
tion has become one of the most attractive techniques
for ubiquitous applications [1]-[7].Particularly, two key
issues of fingerprint-based scheme, site survey (a.k.a.
radio map construction or calibration) and localization
errors have been extensively studied recently. Many
researchers have demonstrated the feasibility of auto-
matic construction of a radio map by crowdsourcing and
thus eliminate the cumbersome calibration [2]-[4]. As
for accuracy, human mobility captured by smartphone
built-in inertial sensors has been incorporated to reduce
location errors to meter or sub-meter level [6], [8], [9].
Although these innovations have prompted fingerprint-
based localization to become the preferred method, a key
enabler to make it fully practical still remains unsolved:
radio map updating.

It is well-known that RSS is vulnerable to environment
dynamics, including transient interferences such as mov-
ing subjects, door opening and closing, and prolonged
changes like variations of light, temperature, humidity
and weather conditions. Dense multipath in complex in-
door environments further exaggerates the RSS temporal
fluctuations. Hence real-time RSS samples measured in
localization phase could drastically deviate from those
stored in the initial radio map. As a consequence, a
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static radio map may gradually deteriorate or even break
down, especially over long-term deployment, leading
to grossly inaccurate location estimation. To overcome
this problem, an intuitive solution is to repeat the site
survey procedure, which is, however, labor-intensive
and time-consuming. Early efforts resort to a set of fixed
reference anchors additionally deployed to draw fresh RSS
observations to adapt the radio map [10]-[14]. Deploying
extra devices, however, is expensive and not scalable,
hampering the intrinsic advantages of fingerprint-based
localization. Crowdsourced radio maps pave the way for
automatic generation, however, most of them are desig-
nated for automatic construction instead of continuous
adaptation and thus no specific and practical solution
has emerged as yet [2]-[4].

Nowadays mobile phones possess powerful comput-
ing, communicating, and sensing capability, and act as
an increasingly important information interface between
humans and environments. Thus in this paper, we ask
the question: Is it possible to automatically and continuously
update the radio map using merely mobile devices without
additional hardware and extra human intervention? Insights
from mobile computing and crowdsourcing shed lights
on a promising answer. We notice that most mobile
devices (mainly iPads and smartphones) are actually
kept static for some time. Particularly, according to our
primary tracking of campus users, we find that the
percentage of static time can surprisingly exceed 80%
for most users. A mobile device, when in static state,
can sufficiently serve as a movable reference point to collect
abundant fresh RSSs for its current position. Specifically,
one device can contribute measurements at multiple loc-
ations within a day and numerous ordinary devices can
be leveraged. Hence new data can be gathered fast and

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737004, IEEE

Transactions on Mobile Computing

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, NOVEMBER 2016

o
~

T 1 1 1
: | ——50 samples ,-l“:r 4.:('"
g 03 il — — 5 samples 08 o8 i, 08 Vi
I3 /A
g 1! W 06 w 06 w 067y
© 02 r r o a 3 o L
g I L O o4 — — 3days O o4 {: — — 3days O o4 ”/I_.' — —3days
-—--6days -—-+6days % -—-+6days
o
01 /1 02080 i e 9 days Q2 e 9 days 0.2 ’{{.' ----- 9 days
J | —— 6 months —— 6 months g —— 6 months
0 L 0 0 0
-80 —60 0 40 0 40 0 40

-70 10 20 30
RSS [dB] RSS Changes [dB]

10 20 30 10 20 30
RSS Changes [dB] RSS Changes [dB]

(a) RSS distribution with different (b) RSS changes of different APs at (c) RSS changes of one specific AP (d) RSS changes of different APs

amount of measurements. a specific location

over different locations

over different locations

Figure 1. RSS variations over different time period. (a) Average RSS value with 5 consecutive samples may differ at up
to 10dB from that with 50 samples. (b)(c)(d) RSS changes (compared to the initial measurements) over a long period
are remarkably larger than those within a short term of several days.

effectively. A sufficient amount of newly crowdsourced
data, distributed at different points, can be fused to
adapt the current in-service radio map, provided that
adequately accurate locations of these reference points
are attained [6], [8].This essentially means that the radio
map is possible to be continuously updated. And if the
radio map is up-to-date, the quality of location service
can be persistently maintained, even over a long term,
which in return enables accurate localization of future
reference points from mobile devices for map updating.

Motivated by these observations, we propose AcMu,
an Automatic and Continuous radio Map Updating service
for wireless indoor localization that exploits the static behavior
of mobile devices. AcMu employs ordinary users’ mobile
devices as movable reference points to collect the new-
est fingerprints when the devices are static at specific
locations. To accurately locate these reference points, we
monitor moving trajectories of mobile users using iner-
tial sensors and propose a novel localization algorithm
based on trajectory matching, which superimposes a
moving trajectory into the location space with both
fingerprints and geometric constraints. Once an enough
amount of reference points, attached with estimated
locations, are gathered, we trigger a map updating pro-
cedure to adapt the current radio map. Specifically, we
learn a predictive relationship between RSSs of reference
points and other locations from the initial radio map
using partial least squares regression (PLSR), and, on this
basis, derive new fingerprints at each location with the
real-time RSSs from the reference points. The rationale is
that the underlying relationship of how RSS depends on
its neighbors would be relatively stable over time since
neighboring locations probably reflect similar dynamic
changes in the surrounding environments, although the
RSS values may change for individual locations [12],
[13]. Afterwards, the radio map is accordingly adapted
using the newly arriving data. The updated radio map
then substitutes the previous version for all upcoming
location queries thereafter.

We prototype AcMu and conduct experiments in a
typical building for 20 days over a period of more than 6
months. Experiment results demonstrate that AcMu out-
performs existing approaches and effectively accommod-
ates the RSS variations caused by environmental dy-
namics, with average prediction error of around 5dB.

Moreover, by maintaining an up-to-date radio map,
AcMu provides up to 2x improvement on the localiz-
ation accuracy for existing localization techniques.

In summary, we make the following contributions:

1) We design a self-updating method for the radio
map of wireless indoor localization by leveraging
mobile devices, which requires no additional hard-
ware or extra user intervention.

2) We propose a trajectory matching algorithm for
accurate localization. Different from previous prob-
abilistic methods, our approach optimizes the re-
sidual errors of an entire trajectory.

3) We investigate the static behaviors of mobile
devices and exploit their potentials for radio map
updating. While previous works mostly focus on
the mobile attributes, we dive into the static coun-
terpart that is largely unexplored.

4) We prototype AcMu in real environments. Encour-
aging results demonstrate that AcMu makes a great
progress towards fortifying WiFi fingerprint-based
localization as a fully practical service for wide
deployment.

In the rest of the paper, we first provide the back-
ground in Section 2 and the system overview in Sec-
tion 3. Then we detail the system design in Section 4 and
present the implementation and evaluation in Section 5.
We discuss some limitations and open issues in Section 6.
Then we review the related works in Section 7 and
conclude this work in Section 8.

2 PRELIMINARIES AND MEASUREMENTS

In this section, we first conduct primary measurements
to understand the RSS dynamics and present preliminary
background of radio map updating problem.

2.1

While RSS is well known to be susceptible to environ-
mental changes, we conduct a quantitative measurement
on the extent of variations and find several interesting
observations. 1) As shown in Fig. 1a, samples within a
short period of time are incapable of depicting the true
characteristics of the RSS distribution at a specific loca-
tion. Hence instant RSS measurements, e.g., those during
a moving trace, are insufficient to serve as fingerprints

Measurements of RSS Dynamics
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Figure 2. The system architecture of AcMu

for a location, and that is why a bulk of samples need
to be collected at each location during the site survey. 2)
As shown in Fig. 1bcd, RSS changes are small within a
short term of several days, yet disperse to a considerable
scale over a longer term. Thus a static radio map poses
serious deviations over long-term deployment.

The RSS variations can be caused by either transient
interference, such as moving objects, door opening and
closing, or prolonged dynamics like light, temperature,
and humidity changes and weather changes in the en-
vironment. Such dynamics are similar for neighboring
locations. Therefore, certain underlying relationship of
nearby RSS measurements may exist and remain relat-
ively stable over time, even though the RSSs for every
individual location greatly change. This basic intuition
underpins the automatic radio map updating with real-
time data from a set of reference points [12], [13].

2.2 Radio Map Updating with Reference Points

Generally, a radio map RM contains tuples of
fingerprint-location relationships over all sample points
in the region of interests. The physical area of interest
is sampled as a finite location space L = {l,1s,--- ,1,,}
where n is the total number of sample locations and each
location is attached with coordinates I; = (z;,y;),1 <
i < n. Correspondingly, the radio fingerprints are mod-
elled as a signal space F = {f,f5, -, f,} where
each f, = {fua,fi2,--, fip} is the fingerprint record
corresponding to location I;, f;; denote the RSS value
of the jth AP, 1 < j < p, and p is the total number of
APs in the targeted location space. Note that for prob-
abilistic localization methods, RSS distributions, instead
of RSS values themselves, are stored as fingerprints.
Once constructed in offline stage, either manually or
automatically, the radio map is serving for follow-up
location queries without adaptation. The contradiction
between the static radio map and the dynamic indoor
environments, however, seriously challenges the effect-
iveness of location estimation.

Accounting for environmental dynamics, several radio
map updating techniques are introduced. The task of
radio map updating is to adapt the radio map RM;_;
at time point ¢;,_; to a newer one RM,; at time t;
to accommodate to uncertain environmental changes.
Previous works like LANDMARC [10] and LEASE [11]

deploy dense reference anchors, i.e., receivers at known
and fixed locations, to gather real-time samples to offset
the RSS variations. To reduce the required number of
anchors, a category of learning-based techniques is in-
troduced [12]-[14], which learns a functional relationship
between the samples at reference points and other loca-
tions with radio map at certain time, and fit the learned
relationship to newly collected data from the reference
points to predict fresh RSSs at other time instants.

To conclude, a typical radio map updating technique
that utilizes new data collected from a set of reference
points involves three steps:

1) Data collection: Collect new data from the reference

points deployed at known locations;

2) Model learning: Learn a temporal/spatial relation-
ship between the fingerprints at these reference
points and other non-reference locations;

3) Map updating: Update the radio map based on the
learned model with newly collected data as inputs.

In AcMu, we also aim to combat RSS variations and
maintain an up-to-date radio map, but remove the re-
quirements of additional reference anchors as well as
extra user intervention.

3 OVERVIEW

This section presents a brief overview of our design. We
aim to extend a radio map built at one time point to be
adaptable to environmental dynamics and thus usable
for other time instants. In AcMu, we accomplish this
task by leveraging mobile devices to collect an adequate
amount of fresh RSS samples. The key insight is that
static mobile devices can be treated as movable reference points
that contribute real-time RSS samples for adapting the radio
maps. Although previous work has demonstrated the
feasibility of learning temporal changes with the help of
fixed reference transmitters, to translate such an intuitive
idea to a practical system entails distinct challenges.

1) Different from intentionally deployed anchors that
have fixed accurate location information, it is
challenging to obtain perfect locations of mobile
devices even when they are static at specific points.

2) Different from fixed reference anchors, the amount
and locations of movable reference points based
on mobile devices change for every time updating,
which increases the difficulty in modelling the
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relationship between reference points and other
locations in the radio maps.

3) The fundamental relationships between finger-
prints of reference points and other locations are
non-trivial to acquire due to intangible signal
propagation in complex indoor environments.

To address these challenges, AcMu involves three
main components, i.e., pin data collection, reference point
estimation, and radio map updating, as depicted in Fig. 2.
Data from mobile users are automatically recorded dur-
ing their routine work and life in indoor space. Specific-
ally, radio signals are measured when a mobile device
stays stationary for a certain duration. When the user
is moving, wireless data together with motion data are
collected to monitor the walking trajectory. The collected
data, referred to pin data, are then uploaded, either
in real-time or delayed until appropriate WLANs are
available, to the back-end server for further processing.
Any users present in the area of interests can participate
in the data collection. Also, one user can contribute
many groups of data within one day, depending on
the mobility behavior and the device status (including
battery, usage, motion, etc).

Data received at the back-end server are then fed to the
reference point estimation module to extract reference
points for map updating. To locate the static mobile
devices as accurate as possible, the accompanied moving
trajectories in the pin data are utilized for trajectory
matching. Once a sufficient number of reference points
are obtained, the radio map is updated with the newly
acquired data, based on an underlying relationship
between RSSs of the reference points and other locations
learned from the initial radio map. The updated radio
map, which has been adapted to the environmental
changes, is then used for online localization for further
location queries.

Note that during the data collection procedure, users
are in no need of explicit participation to measure and
upload data. All data are automatically and silently
collected through a back-end service running on the
mobile devices. AcMu does not affect normal localization
service since map updating can be executed during out-
of-service time, e.g., during the night. Different from
previous crowdsourcing-based radio map construction
schemes that mostly require accumulation of abundant
data as inputs [2], [3], the update operation in AcMu can
be carried out gradually in a one-by-one manner with
even only a single trajectory. In addition, we do not
modify the working flow of classical fingerprint-based
localization schemes and thus most of existing indoor
localization systems, especially those based on smart-
phones [1]-[5], are compatible to be applied in the
location estimation module. Indeed, we do not intend to
propose advanced localization algorithm in this paper.
We instead mainly target at adapting the radio map.
As in Section 5, we also validate the performance of
our adaptation scheme based upon previous localization
algorithms [1], [15].

4 METHOD DESIGN

In this section, we first illustrate how to collect mobile
data that are feasible for updating the radio map. Then
we present how to extract reference point from these
data and further how to update the radio map.

4.1 Pin Data Collection
4.1.1 Pin data specification

While a large body of recent works demonstrate that
localization can benefit from user mobility [2]-[4], we
further investigate and leverage the static behavior of
mobile devices. Specifically, data collected when mobile
devices are detected to be stationary can serve as refer-
enced data for adapting radio maps. In contrast, data
recorded when the user is moving are speculated to
be beneficial for accurate localization. Accordingly, we
attempt to collect data that contain two parts: a relatively
large amount of RSS samples measured at static state
and a series of RSS vectors along with mobility data
during moving. We refer such data to as pin data since
they consist of a bucket of “spot data” and a short tail of
“trajectory data”. The reasons why we must collect pin
data are that only an abundant amount of RSS samples
are capable to describe the wireless channel character-
istics while trajectory data with mobility constraints are
promising in obtaining sufficient location accuracy for
the static points. Neither static nor mobile data alone
are capable of finishing the radio map updating task.

4.1.2 Mobility monitoring

To collect pin data, a basic task is to monitor the motion
states of mobile users. To this end, we conduct a local
variance threshold method [2] on the acceleration data
reported by the built-in accelerometer sensor to detect
whether a mobile device is in motion. While the device
is detected to be static, RSS samples over a certain period
would be recorded. Then once the user is detected to
move, radio signals together with inertial sensor data
will be measured for a specific duration.

Mobility information, which provides distance and
direction constraints between successive RSS samples,
is then derived from the inertial sensor readings using
dead-reckoning, which is an extensively studied and
well utilized technique in indoor localization [16], [17].
To construct a moving trajectory, three typical steps are
employed in smartphone-based dead reckoning, i.e., step
counting, orientation reckoning, and stride estimation.
Besides the accurately monitored trace structure, another
nice feature of dead-reckoning, based upon extensively
studied techniques [6], [16], lies in that a user do not
need to intentionally hold the phone for inertial sensing.
Instead he can hold the phone in hand or put it in a
pocket or a bag. We present a brief working flow and
omit the details, which can be easily referred in the
literature [4], [6], [16], [18].

(i) Step counting. Various approaches have been pro-
posed to infer footstep counting from acceleration data
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[4], [6]. The rationality behind step counting is that
the accelerations exhibit periodically repetitive patterns,
which arise from the nature rhythmic of human walking.
In this paper, we adopt a finite state machine based
algorithm proposed in [18], which can provide step
counting as accurate as up to 98%. Fig. 3 portrays a basic
example of the step counting results, where the start and
end points of each step are both detected.

(ii) Orientation reckoning. Regularly, orientation
reckoning relies on magnetometer and gyroscope
sensors, which provide absolute direction with respect
to the earth coordinate system and the relative direc-
tion changes with respect to the phone platform, re-
spectively. In AcMu, we employ gyroscope to monitor
relative direction, which has been demonstrated to be
remarkably accurate as indicated in [6], [18]. Further-
more, we incorporate compass to supply absolute dir-
ection of the trajectory in order to reduce the searching
space during the trajectory matching module (discussed
in the next section). Compass readings, however, can
be considerably noisy in indoor environments due to
electromagnetic interference. Particularly, single meas-
urement errors could be as large as 25~50°. In AcMu,
we employ a recent innovation of orientation estimation
which further incorporates acceleration data and reports
error within 20° for each step [8]. To further reduce the
error, we derive a central direction of the entire trace
(Fig. 4), which is the average of direction estimations
during each step. Although the central direction is still
not perfectly precise, it is sufficient for our trajectory
matching algorithm in the subsequent section.

(iii) Stride estimation. The footstep counts are typic-
ally converted into physical distances by multiplying a
certain value of users’ stride lengths. AcMu incorporates
the approach proposed in [8], which outputs accurate
stride estimation for a variety of users with maximum
error of 8.9cm and mean error of only 4.3cm. The
adverseness of yet existed slight errors will be further
mitigated during the trajectory matching algorithm for
location estimation by searching for a range of values
within the error bound.

For every group of pin data, we divide them
into two parts. A sequence of continuously measured
RSS samples at a specific spot are averaged to be
a representative fingerprint vector, denoted as 7
{re1,7x2, -+ ,rp} where ry; indicates the mean RSS

illustration of dead- Figure 5. An illustration of trajectory

matching

value of the jth AP at reference spot k& (with unknown
location I,,) and p is the total AP number in the area
of interests. These spot data, once the corresponding
location is estimated, are used as real-time reference
data for map updating. The followed trajectory data
are employed to achieve accurate location estimation
of the spot. Assuming that totally w samples are in-
cluded in the trajectory, it can be represented by J =
{81,82, ", 84}, where s;,i = 1,2,--- ,w, indicates the
ith fingerprint measurement within the trajectory and
obviously s; T (assuming that we use data in the
form of spot data followed with moving tail; otherwise
S = 1}). As above mentioned, the walking distance and
orientation between any two consecutive samples have
been derived, denoted as d = {d;,ds, - ,dy,—1} and
¢ = {1,090, -, a1} respectively, where d; denotes
the distance between the i + 1th sample and the ith
sample and «; is the corresponding direction. As illus-
trated in Fig. 4, given these constraints, a rlgld trajectory
is derived with a central direction of ¢ = 1= 3" Loy,

One comment we want to make is that there mlght be
no strictly one-to-one correlation between the fingerprint
samples and the footsteps detected. To deal with this, we
simply align each fingerprint to the closest step, which
is clearly identified with a certain timestamp as in Fig. 3.

4.2 Reference Point Estimation

In this subsection, we propose a trajectory matching
scheme to precisely estimate the spot locations. The
idea is to utilize geometrical constraints reflected by the
trajectories to reduce location uncertainties. Although
extensive research works have exploited user mobility
to enable accurate localization with meter- or sub-meter-
level accuracy [19]-[21], we harness a trajectory in a
distinctive global optimization manner as follows.

Given trajectories collected at time t;, our goal is to
match them against the latest radio map RM)_; (since
RM;, is not available yet) to locate the corresponding
referenced spots as accurate as possible. The task of
trajectory matching is to find a sequence of location
candidates in the location space such that the distances
between these candidates are subjected to the distance
constraints implied by the trajectory, while the total
fingerprint difference is minimized.

A dead-reckoned trajectory with displacement and
direction constraints can be treated as a rigid structure,
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which holds the relative geometry information. Hence,
the trajectory matching task can be treated as to super-
impose a rigid structure in the location space, which can
be done by a sequence of constrained translation and
rotation operations as specified by the following steps:

(i) Detecting feasible region from initial WiFi es-
timation. Instead of searching over the whole location
space L, we narrow the search space by leveraging the
initial pure WiFi-based location estimations. Generally,
fingerprints within a trajectory will fall into a limited
area, although each location might not be precisely
located. We thus sketch a feasible region as a convex
closure in the location space that covering all those
initial location estimations and only search for optimal
candidates within this region.

(ii) Locking feasible orientation from trajectory dir-
ection. Since we have obtained the estimated central
direction ¢ of the trajectory, it is not necessary to search
for all orientations throughout 360°. Alternatively, we
only search a certain section around the central dir-
ection. As shown in Fig. 5, we consider the interval
of [¢p — Ag,é + Ag¢], where A¢ is supposed to be the
maximum direction error. We set A¢ at 10° since ¢ is an
averaged value of orientation estimations for each step,
which are within 20° with high confidence [8].

(iii) Joint location estimation. Finally, we search for
optimal locations to superimpose the trajectory against
the radio map, with a minor translational step of At
meters and rotational step of Ar degrees (set to be 0.5m
and 2° based on the empirical study and environmental
settings). The matching algorithm minimizes the sum
of square difference over all fingerprint samples within
the trajectory J = {s1,82,---,8,} with geometrical
constraints.

min | £y — Sjll, st
fmeF; v (1)

where d;; = [[l.(; 1) —lc(;)|| denotes the distance between
two candidate locations and ¢, is the candidate location
for s;. Ad is a minimum distance constraints that can
be set to be, e.g., half of the sampling space interval
during the initial site survey. Note that since we do not
have perfect stride length, we will try different versions
of d; here (corresponding to different values of possible
stride lengths with a smaller increment of As ¢cm). For
instance, assuming the estimated stride length is 70cm,
we consider a range of value from 60cm to 80cm with
a step length of 4cm or so, which generates 5 versions
of dj, ie., five different trajectories for matching. For
the final results, we choose the one that produces the
minimal fingerprint difference as in Eqn. 1.

We note that in practice some other localization al-
gorithms could be incorporated to obtain accurate refer-
ence locations, e.g., via dynamic warping [21] or contour-
based trilateration [20] even in case that the mobil-
ity information is occasionally unavailable. Specifically,
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Figure 6. Condition numbers of 140 testing cases
and their distribution indicates significant multicollinearity
(measured by condition number) among RSS samples
from different locations. Generally, a condition number of
larger than 10 indicates probable multicollinearity while
greater than 30 implies serious multicollinearity [26].

sequential fingerprints (but not necessarily trajectories
with mobility hints) provide promising constraints for
precise location estimation [21]-[23]. Furthermore, other
types of readily accessible fingerprints like magnetism
[24] as well as image-based approaches [25] can also
be leveraged to enhance location estimation. After the
candidate locations are selected, the first location, I.(1),
is estimated to be the location of the referenced spot.
Fusing all pin data at time point ¢;, we obtain a group
of reference spots Ry, = {l,,,l,,---,l,, }, each with
estimated location l,, = (x;,v:;),i = 1,2,---,m. Note
that both R, and m change for every time updating.
The following section details how these spot data, given
their locations available, are used to accommodate to
environmental dynamics.

4.3 Map Updating

To update a previous radio map with newly collected
data from a set of reference points, a critical issue is to
identify and model a functional relationship between the
RSSs observed at reference points and other locations.

Assuming that a set of reference spots Ry, is obtained
at time t; and the jth spot is located at l.,, we need
to learn a predictive relationship % between the RSS
values of these locations and those of each other location.
Consider the jth AP, 1 < j < p at location 1;,1 < i < n,
we aim to learn a functional relationship %; as

f’ij (to) = %] (fmj(to)? f7’2j (to)v T 7.f7“mj (to)) ; (2)

which reflects the mapping from RSS values received at
the m reference locations to the RSS at location I;. Here
fij(to) and f,, ;(to) denotes the RSS value of the jth AP
at location I; and I,, respectively, both of the original
radio map RMy. Built at time point ¢y, i.e., the offline
stage, the above relationship is expected to be capable
of capturing the relationship between RSS values at ;
and those measured at I, (1 < k < m) in the future,
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regardless of the time point t. Consequently, given the
reference data from a set of reference spots at time point
t available, we are able to predict the RSS values at other
locations using the learned function J#.

4.3.1 Learning the Regression Model

Ideally, there should exist a linear relationship between
the RSS at one location and those received at the refer-
ence points, according to theoretical signal propagation
models, e.g., the log-distance path loss (LDPL) model.
Signal propagation in practice, however, suffer from
unpredictable reflections, diffractions, scattering, shad-
owing, etc, which are generally known as multipath
effects, resulting in significant multicollinearity among
RSS measurements from different locations. Concretely,
as shown in Fig. 6b, serious multicollinearity, measured
in term of condition number [26], are observed between
RSS vectors at different locations based on real-world
measurements. In this case, classical multivariate linear
regression will result in unstable estimation coefficients
and thus produce high variances in prediction. A model
tree based approach is employed in [12] to deal with
this problem in case of using fixed reference points. In
AcMu, we investigate partial least square regression (PLSR)
as a superior choice, which yields stable, correct and
highly predictive models [27] in such case. Later we
will also implement alternative approaches in AcMu for
comparison in Section 5.

PLS regression generalizes and combines features from
principal component analysis (PCA) and multivariate
linear regression. It is particularly useful when the num-
ber of predictors is comparable to or greater than the
number of responses, and when there is multicollinearity
among observation variables, which is exactly the case
of AcMu. PLS regression finds components from the
observation variables X that are also relevant to the re-
sponses Y. Specifically, PLS regression works by search-
ing a set of latent vectors that performs a simultaneous
decomposition of X and Y with the goal to maximize
the covariance between X and Y. This step generalizes
PCA and is followed by a regression step where the
decomposition of X is used to predict Y. Generally, PLS
regression can have the form of multivariate regression
of Y = XB+ E with B = XTU(Tr"xx"v)"'1"Y,

Algorithm 1: Radio Map Updating
Input:
The initial radio map RM,, the newest fingerprint
measurements at a set of locations R;
Output:
The complete updated radio map RM;
1: for each location I; ¢ R; do
2:  for each AP j do
3 Calculate function 77
4 Update f;;(to) to ﬁj(t) according to Eqn. 4
5
6:

Ry

end for
end for

as in Eqn. 2 from RM,

where T and U are matrices of the extracted latent
vectors and E is the residual matrix [27].

In AcMu, X = [f, ;, frpir 5 Fr, jlnxm is the matrix
of RSS observations from m reference points, ¥ =
[fij]nxl is RSS measurements from location ;. Since
Y is a one-dimensional vector (and we denote by y),
however, the problem can then be solved by the PLS1
algorithm [28], which is designated for the single re-
sponse variable case of PLS regression. PLS1 algorithm
repeats the following steps to find the first g latent vari-
ables. Mathematically, for the jth latent vector, search for
t; = X, w; to maximize the covariance cov(X ;w;,y;)

subject to w] w; = 1.
T T
w; ijj/HijjH
tj = Xj’lUj
T
p; = X, tj/tit
5 =

For the first latent vector, let X; = X and y; = y. To
search for the next latent vector t;;,, X; and y; are
deflated by their regression approximations on t;, i.e.,
X1 =X;—t;p],y; 11 = y; —t;¢;, and then repeat the
above steps using the deflations.

Hence after g runs, we have two m x g matrices W
and P and an n x g matrix T' with columns w;, p;
and t; respectively, and form a column vector ¢ with g
elements ¢;. The number of scores g should, in principle,
be chosen such that the residual matrices of X and y
after g runs, ie, X, 41 = X — TP” and Ygr1 =Yy —TC,
are approximately uncorrelated with each other. And
then we obtain the PLS regression in form of

®)

where ¥ is the predicted values and B = W (PTW)~'¢
is the regression coefficients.

y=T¢c=XB=XW(P'W) e

4.3.2 Updating the Radio Map

Once the regression function has been derived, the re-
maining task is to update the radio map with the newest
measurements from a set of identified referenced spots.

Let R; be the set of m reference spots at time ¢.
For a non-reference location I;, of which the newest
fingerprints are unavailable, we now have learned the
relationship 7; from the initial radio map RM, based
on PLS regression. Then the fingerprint of location I; is
updated by

Fii ) = A5 (Fors @), frag @)oo frn i) (@)

where f,, ;(t) denotes the newest RSS observations of the
jth AP atlocation [,,, and fij (t) is the predicted fresh RSS
of the jth AP at location [; at time ¢.

Once a set of sufficient number of referenced spots are
available, the update procedure is executed for one time
to adapt the current radio map according to the newer
measurements. Note that because both the amount of
reference points and their corresponding locations vary
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O Sample Location
* Known AP Location

30m

Figure 7. lllustration of experimental areas

over each time updating, the regression function needs
to be recalculated for each update, as indicated in Al-
gorithm 1. By frequently and timely updating, the radio
map is almost always up-to-date and thus adaptively ad-
apts to environmental changes. Although the updating
task, including trajectory matching and map updating,
might be computation-intensive, it does not affect nor-
mal localization service since the updating operations
can be executed only in off-peak or off-service periods.

5 IMPLEMENTATIONS AND EVALUATION
5.1 Experimental Methodology

We prototype AcMu on Google Nexus 7 pad and Google
Nexus S phone, which both run the popular Android
OS and support various types of inertial sensors. We
conduct the experiments on one floor of a typical office
building covering more than 1500m?, as illustrated in
Fig. 7. Specifically, the experimental areas contain a cor-
ridor and 14 rooms, including laboratories, offices, and
classrooms. The experimental area is crowded with vari-
ous APs that are readily installed in the environments,
some by the university and some by the laboratories.
Approximately, there are up to 40 APs in total, among
which we chose 16 that keep active throughout the
entire experimental period. Several APs with known
locations are marked in Fig. 7 while others are installed
at unknown locations. Fig. 8 portrays some screenshots
of our prototype system as well as an illustration of the
generated radio maps in the deployment area. As seen,
coarse locations of those unknown APs can be estimated
based on a complete radio map, although we do not need
such information for map adaptation or localization.
We deploy the localization service of AcMu for over 6
months and conduct experiments for 20 days across the
6 months, which include two phases: the initial phase
and a phase conducted 6 months later. During the initial
phase, we survey the experimental areas with a sampling
density of about 2mx2m, producing around 150 sample
locations. For each sample location, we collect 60 finger-
prints for around 1 minute, except for the initial radio
map, for which we collect 90 fingerprints at each sample
location. Afterwards, we repeat the survey procedure
every two or three days for two weeks. The latter phase
executes the similar task, yet is 6 month later, when the
environment is expected to be changed at a relatively
large scale, and lasts for one week. During remaining
time of the 6 months, AcMu is continuously running,
yet we do not collect experimental data for evaluation.

(b) Radio map

(a) AP scanning

(c) AP spot estimation

Figure 8. System screenshots

Three volunteer users participate in the data collection
procedure. Each user carries a smartphone with him
during his daily life. The smartphones are pre-installed
with a prototyped App for data collection and are
used as their primary phones during the experimental
periods. The users, however, do not need to behave
intentionally for data collection. They simply work and
live routinely as they commonly do. We believe the
data gathered in such way are representative for general
realistic scenarios.

Besides the radio map data, another two categories of
data are also collected during each survey:

1) Pin data. We collect pin data by placing a mobile
device still for a certain period (ranging from 10
seconds to 1 minute) and then taking it for a short
walk, during which the sensor data of accelero-
meter, gyroscope, and compass are also recorded.
We collect 30 to 80 such traces during each survey,
covering different rooms. When collecting pin data,
a user needs to take a phone during movements,
but does not need to dedicatedly hold the phone
at a fixed relative pose (e.g., in front and always
facing ground).

2) Query data. Query data are collected from ran-
domly selected locations during each survey,
within a short period of one or two seconds, for loc-
ation query. Moving trajectories are also taken into
consideration for query, yet not necessary in the
form of pin data (the spot parts are not required).

Pin data are used to evaluate the trajectory matching
algorithm as well as extract reference points for map up-
dating. Query data are used to test localization accuracy.

5.2 Performance Evaluation
5.2.1 Performance of Trajectory Matching

We first evaluate the localization performance of the
proposed trajectory matching algorithm. Most of traject-
ories involved in the experiments are relatively short
with 3 to 8 RSS samples. As shown in Fig. 9, trajectory
matching yields average accuracy of about 1.0 meter and
95th percentile accuracy of 2.2 meters when using a real-
time radio map. An average accuracy of 1.4 meters and
95th percentile accuracy of 2.6 meters are still main-
tained with a recent radio map (e.g., within 3 days).
In contrast, location accuracy degrades heavily to more
than 3 meters in average error and 5.6 meters in 95th
percentile error when using a long-outdated radio map
(6 months). Given that the sampling density is 2m x2m,
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Figure 11. Performance comparison of different prediction
models

the delightful accuracy of trajectory matching using a
recent radio map demonstrates our basic insight that
mobile devices can be used as reference points and lays
a firm foundation for the map updating technique.

5.2.2 Performance of Map Updating

Precision of map updating is the most critical perform-
ance metric of AcMu. We use RSS prediction error, i.e.,
the RSS difference between the predicted values and the
ground-truth measurements, to evaluate the perform-
ance. Since we do not collect data continuously over
the 6 months, we extract reference points to update the
radio maps 6 months later using the recently surveyed
radio map yet still conduct prediction based on the initial
one constructed 6 months ago. And note that we only
account for RSS prediction errors of non-reference points,
since the “predicted” RSS at a reference point is exactly
the real-time measured value and thus the corresponding
error equals zero.

As shown in Fig. 10a, AcMu produces accurate predic-
tion of real-time RSS samples, regardless of the running
time. While the true RSS values deviate more greatly
over long periods, AcMu consistently yields accordant
prediction, with average RSS residuals of less than 4dB
after 3 and 6 days and around 4dB on the 9th day while
5.5dB for 6 months later.

We further examine how many reference points are
sufficient to produce accurate prediction. Fig. 10b il-
lustrates the prediction results with different number
of reference points used. As seen, when using 30 to
60 points over the whole radio map of around 150
sample locations (around 20% to 40%), the radio map can
be gracefully adapted to accommodate environmental
dynamics, with average prediction error in RSS values
of 6.9dB, 6.8dB, 6.2dB and 5.4dB, respectively. The re-
quired amount is not too high for practical applications
since there are frequent opportunities from numerous

mobile devices to collect reference data and thus such
movable reference points can accumulate considerably
fast (according to one of our primary tracking of campus
mobile users, the percentage of time period when the
devices are placed still can be up to 80% through the
whole day).

Finally, we inspect the performance with reference
points that are differently distributed over the location
space. We randomly choose 4 groups of an identical
number of reference points and 2 groups of them are
uniformly distributed while another 2 are clustered. As
shown in Fig. 10c, better performance will be gained
when the locations are evenly distributed over the mon-
itoring area, with around 4dB enhancement in average
prediction error compared to using uneven reference
points. Thus in practice, the updating server can be
triggered less frequently, only in cases of sufficient num-
ber of evenly distributed reference points.

Performance comparison. Alternative to PLSR, differ-
ent effective prediction models could also be applied
in AcMu framework as long as they are capable of
captureing the intrinsic RSS neighbourhood relationship.
To compare the performance of AcMu, we implement
two related approaches: (1) a model tree (MT) based
approach [12] and (2) a multivariate linear regression
(MLR) method extended from [29]. As for the MT
method, we apply the M5” algorithm [30] to induce an
effective model tree as done in [12]. We test the perform-
ance of each method for prediction after 3 days and 6
months, respectively. We use an identical set of evenly
distributed reference points that occupy a moderate ratio
of 30%. As seen in Fig. 11, AcMu achieves slightly better
accuracy than MT method (with incremental gains of
around 1dB in mean and median prediction accuracy),
which both considerably outperform the linear approach
by about 5dB. Specifically, MT yields slightly worse but
still comparable accuracy with AcMu after 3 days, while
MLR induces significant errors for any case. The mean
and median prediction errors after 3 days when using
AcMu, MT, and MLR are 4.8dB, 5.5dB, and 11.6dB and
3.9dB, 4.1dB, and 8.7dB, respectively. In the case of 6
months, the corresponding metrics are 6.5dB, 7.3dB, and
11.5dB and 4.7dB, 6.2dB, and 10.1dB. In addition to the
superior performance of radio map adaptation, the key
advantage of AcMu lies in that it enables adaptation
without using fixed infrastructure, which is beyond the
achievements of previous approaches. In contrast, the
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localization algorithms. Nevertheless, for comprehensive
understanding of the adaptation effects, we carry out
experiments to validate the accuracy and effectiveness
by appropriately adapting the original radio maps. We
choose and implement the most well-known and typ-
ical fingerprint-based localization algorithms, including
RADAR [15] and Horus [1], to evaluate the accuracy
gains of the predicted radio map for real-time local-
ization. We also compare the performance of the pro-
posed trajectory matching algorithm by implementing
it in the localization phase. We employ each localization
algorithm against an initially constructed radio map (ori-
ginal), a real-time measured radio map (ground truth),
and an updated radio map (predicted), respectively. As
we mostly care about the relative accuracy improvement
provided by AcMu compared to using a static radio
map, we test all algorithms under identical settings and
omit the impacts of factors such as the number of APs
and the number of RSS samples, which might be critical
to common localization algorithms. We argue that the
absolute accuracy, based on the adapted radio map, can
be further improved by employing more advanced loc-
alization algorithms [21] or extra information [5], which,
however, is out of the scope of this paper.

As shown in Fig. 12a, AcMu provides up to 30%
improvements on average localization accuracy by using
the updated radio map when deployed for 3 days.
Fig. 12b shows that more than 30% enhancements are
still gained using the updated radio map of AcMu after
a 6-month running. Similarly in Fig. 12c and Fig. 12d,
the average location errors are reduced by 28.7% and
31.4% when running Horus-based KNN for 3 days and 6
months, respectively. Furthermore, as shown in Fig. 13a,
benefiting from the stable performance of trajectory
matching based method, similar location accuracy of
about 1.4 meters in average can be obtained when using
either an updated radio map or a recent one (e.g., within
3 days). When the localization service has run for a
long term, however, AcMu gains remarkable accuracy
improvement of more than 2x, compared to using the

Location error [m]

Location error [m]

(a) Trajectory matching for 3 days (b) Trajectory matching for 6
months

Figure 13. Localization accuracy of trajectory matching for

different running periods using static, predicted, and real-

time radio map, respectively

static original one (1.4 meters to 3 meters). In addition,
comparing all the results in Fig. 13, we observe that
the proposed trajectory matching algorithm significantly
outperforms RADAR and Horus in any case.

Since the ground truth radio map represents exactly
the fresh RSS samples, the predicted radio map is of no
reason to be better. Nevertheless, comparable accuracy
is still achieved. Particularly, the accuracy of using the
predicted radio map is extraordinarily close to that of
using the real-time measurements, with only a minor
gap of 0.34 meters in average after a 6 month period.
In other words, a continuously updated radio map is
capable of maintaining accurate and stable performance
for long-term running systems. We envision AcMu as a
fundamental and indispensable supplementary for exist-
ing localization techniques to cope with fingerprint vari-
ations caused by environmental dynamics, by extending
a radio map built at one time instant to be adaptable and
effective for other time instants.

6 DISCUSSIONS AND LIMITATIONS
6.1

The assumption that certain relationships among RSS
observations from neighboring locations keep relatively
stable over time acts as a fundamental primitive for
automatic radio map self-updating [11], [12]. We verify
our proposed model via real-world experiments with the
following logic: if a model (embodying the relationship)
trained at one time slot predicts well for another time
slot, we can conclude that the model also holds at the
new time slot. In other words, the prediction accuracy
serves as a good metric for not only the performance

Generality of Neighbourhood Relationship
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of the updating services but also the rationality of the
model itself. Thus if we could find a model that is
learned initially while predicts well for any time point,
we confidently demonstrate a certain relationship among
neighboring RSS observations, which can be described
by the derived model.

While we have validated the assumption over a long
period of 6 months and previous works also support and
build systems upon this assumption [11], [12], we agree
that the generality of the time-invariant relationship
should be further validated across difference scenarios.
The proposed approach has been demonstrated to work
well in typical small and medium spaces, which are the
majority of indoor scenarios, but still needs to extens-
ively evaluated especially those large spacious areas. In
the future, we intend to deploy localization systems in
multiple buildings to further verify the practicability.

6.2 User Intervention

AcMu employs ordinary mobile users to participate in
the radio map updating tasks. As we mentioned above,
however, these users do not need to intentionally behave
in any favourable way for desired data collection. The
reasons are two-fold: 1) Standing upon extensive pre-
vious research [6], [16], [17], nowadays we are able to
monitor user mobility via smartphones efficiently and
effectively, e.g., detecting whether a phone is moving or
not, reckoning the trajectory of a moving user, or even
monitoring the context-aware user activities, etc. Incor-
porating these proven techniques, we are able to obtain
satisfactory trajectories in most scenarios. 2) In case of
“bad” trajectories, AcMu can just abandon them. Since
the updating task is expected to run every several days
or weeks, thus it is probably still promising to collect
enough reference points over a accumulative period even
if we drop some of them. To identify “bad” trajectories,
we can investigate the inconsistency between different
dimensions of sensing data, e.g., WiFi observations, ac-
celeration data and gyroscope data, etc, as done in [31],
[32]. For instance, if the RSS measurements appear to
be stable across a trajectory, it is probably a “bad” one
that is mistakenly estimated from user motions at a
same location. We leave such quality-aware trajectory
monitoring as a valuable and promising future direction.

6.3 Practical Deployment

In practice, when integrating AcMu into an existing
localization system, several practical issues need to be
carefully considered and addressed. We discuss some of
the major ones in the following.

First, rather than using a fixed period, the radio map
updating should better be executed based on specific
conditions, for example, when significant biases are ob-
served between the current radio map and the fresh
RSS measurements (from the identified reference points)

have been accumulated. The detailed values of finger-
print bias and reference point number could be determ-
ined by specific application scenarios and requirements.

Considering power management, although inertial
sensing has been demonstrated to be energy-efficient,
one can still alleviates the power concerns by intelli-
gently selecting appropriate devices and timeslots for
data recording. For instance, we notice that mobile
devices are common to be charged even in daytime
when they are powered up. Thus for these devices,
we can gather more data over a longer time window.
While it would be better to collect a minimal amount
of measurements or even not recording data for low-
battery devices. By doing this, we can lessen the negative
influence on participants” daily uses of mobile phones.

Device heterogeneity has also been a long-standing
problem in fingerprint-based localization, especially
crowdsourcing-based solutions. Different mobile devices
might observe diverse RSS values under the same en-
vironment, which would also degrade the prediction
performance of AcMu. Fortunately, recent innovations
[22], [23], [33], [34] that explore differential RSS among
neighbouring or sequential locations would provide new
insights in dealing with this problem.

Inspired by recent innovations [20], [21], in the future
we tend to devise accurate localization algorithms for
reference points without using mobility hints in purpose
of further liberating any user intervention and mitigating
the power concerns.

7 RELATED WORKS

Among a large body of works in the literature of indoor
localization, the design of AcMu is closely related to the
following categories of research.

Radio Map Construction. Smartphones with vari-
ous built-in sensors have been thoroughly exploited to
reduce or eliminate site survey efforts of radio map
construction. Pioneer works including LiFS [2], Unloc
[6], Zee [4], WILL [35], etc., design crowdsourcing ap-
proaches to employ mobile users to participate in data
collection. Recent innovations such as Walkie-Markie [3],
Jigsaw [36] and CrowdlInside [37] attempt to further
reconstruct an indoor floor plan leveraging crowdsensed
data. EZ [38] alternatively attempts to avoid the need of
a prior radio maps and AP knowledge by modeling and
solving the physical constraints of abundant measure-
ments. These works mainly aim at easing the site survey
to construct radio maps in the initializing phase, and typ-
ically requires abundant crowdsourced start data [2], [3]
or detailed digital floorplans [4]. AcMu is orthogonal to
them in focusing on radio map updating during serving
phase to cope with fingerprint variations over time and
can work with any amount of crowdsourcing data and
does not require a digital floorplan. Having said that,
AcMu is still compatible to the crowdsourced radio maps
constructed by using schemes in these works.

Radio Map Adaptation. Considering environmental
dynamics, early systems like LANDMARC [10] and
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LEASE [11] utilize reference anchors intentionally de-
ployed at fixed known locations to adaptively offset the
RSS variations. Accurate results can be attained if the ref-
erence anchors are densely deployed. To reduce the use
of numerous reference anchors, learning-based methods
are introduced. LEMT [12] achieves adaptive temporal
radio map by learning a functional relationship for one
location and its neighbors based on a model tree method.
Transfer learning techniques such as manifold alignment
[13] and transferred Hidden Markov Model [14] are
also applied to transfer RSS measurements over time.
Although all relying on additionally deployed referenced
points, these methods do reduce the cost and complexity
for radio map maintenance and shed lights on more
practical solutions. Two recent works, Chameleon [39]
and LAAFU [40], both identify any altered APs and
filter them out to maintain localization accuracy under
altered AP signals, and accordingly update the finger-
print database with the real-time estimation. A confer-
ence version of this work can be found in [41]. We specify
the typical working flow of radio map adaptation with
reference points and provide discussions on the model
generality and user intervention issues. We explore al-
ternative solutions to gain precise reference locations in
lack of mobility information. In addition to PLSR, we
additionally implement a model tree approach and a
linear regression method for comparison. We conducted
more comprehensive experiments in detail and provide
additional results.

Mobility Assisted Localization. Recent advances in
indoor localization, especially those assisted by smart-
phones, have enabled meter or sub-meter level accuracy
[4]-[6]. Unloc [6] and Zee [4] both pinpoint precisely
constructed user trajectories with meter-level accuracy
by harnessing identifiable indoor landmarks and floor
plan imposed constraints, respectively. [5] incorporates
acoustic ranging in WiFi fingerprinting to limit the large
tail errors. Montage [8] combines acoustic ranging with
inertial sensing to provide meter-level tracking of multi-
users. A recent work [19] even enables centimeter-level
location resolution via opportunistic sensing. Most of
these highly accurate systems benefit from smartphone
enabled inertial sensing [16], [17], which depicts a traject-
ory with relative displacement based on step counting
and heading estimation with smartphone sensors [31],
[42]. These technologies underpin a primary primitive
for AcMu, while AcMu in return can fortify them to
maintain high accuracy in the long term.

8 CONCLUSIONS

In this work, we propose AcMu, an automatic and
continuous radio map self-updating service for wireless
indoor localization that exploits the static power of mo-
bile devices. We employ ordinary mobile devices, when
they are static, as movable reference points for real-
time data collection and accurately pinpointing them
by a novel trajectory matching algorithm. With newly

collected data from reference points, we adapt the entire
radio map by diving into the underlying relationship
of RSS values between neighboring locations, which
turn out to be relatively stable over time. We prototype
AcMu and conduct experiments in typical buildings. Ex-
perimental results from 20 days across 6 months demon-
strate that AcMu effectively accommodates the RSS de-
viations caused by environmental dynamics. Using the
predicted radio map, AcMu provides 2x improvement
in localization accuracy for long-term running localiza-
tion service.
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