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Abstract—Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the
past decades. Most radio-based solutions require a process of site survey, in which radio signatures of an interested area are
annotated with their real recorded locations. Site survey involves intensive costs on manpower and time, limiting the applicable
buildings of wireless localization worldwide. In this study, we investigate novel sensors integrated in modern mobile phones and
leverage user motions to construct the radio map of a floor plan, which is previously obtained only by site survey. Considering
user movements in a building, originally separated RSS fingerprints are geographically connected by user moving paths of
locations where they are recorded, and they consequently form a high dimension fingerprint space, in which the distances
among fingerprints are preserved. The fingerprint space is then automatically mapped to the floor plan in a stress-free form,
which results in fingerprints labeled with physical locations. On this basis, we design LiFS, an indoor localization system based
on off-the-shelf WiFi infrastructure and mobile phones. LiFS is deployed in an office building covering over 1600m?2, and its
deployment is easy and rapid since little human intervention is needed. In LiFS, the calibration of fingerprints is crowdsourced
and automatic. Experiment results show that LiFS achieves comparable location accuracy to previous approaches even without

site survey.

Index Terms—Indoor Localization, Floor Plan, RSS Fingerprint, Smartphones, Site Survey

1 INTRODUCTION

The popularity of mobile and pervasive computing
stimulates extensive research on wireless indoor lo-
calization. Many solutions are introduced to provide
room-level location-based services, for example, locat-
ing a person or a printer in an office building.

The majority of previous localization approaches
utilize Received Signal Strength (RSS) as a metric
for location determinations. RSS fingerprints can be
easily obtained from most off-the-shelf wireless net-
work equipments, such as WiFi- or ZigBee-compatible
devices. In these methods, localization is divided into
two phases: training and operating. In the first stage,
traditional methods involve a site survey process
(a.k.a. calibration), in which engineers record the RSS
fingerprints (e.g., WiFi signal strengths from multiple
Access Points, APs) at every location of an interested
area and accordingly build a fingerprint database
(a.k.a. radio map) in which fingerprints are related
with the locations where they are recorded. Next in
the operating stage, when a user sends a location
query with his current RSS fingerprint, localization al-
gorithms retrieve the fingerprint database and return
the matched fingerprints as well as the corresponding
locations.

Although site survey is time-consuming, labor-
intensive, and vulnerable to environmental dynamics,
it is inevitable for fingerprinting-based approaches,
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since the fingerprint database is constructed by loca-
tionally labeled fingerprints from on-site records. In
the end of 2011, Google released Google Map 6.0 that
provides indoor localization and navigation available
only at some selected airports and shopping malls
in the US and Japan. The enlargement of applicable
areas is strangled by pretty limited fingerprint data of
building interiors. If ordinary mobile phone users are
able to participate in site survey by contributing their
data, the burden of indoor map providers like Google
will be effectively reduced.

The development of wireless and embedded tech-
nology has fostered the flourish of smartphone mar-
ket. Nowadays mobile phones possess powerful com-
putation and communication capability, and are e-
quipped with various functional built-in sensors. A-
long with users round-the-clock, mobile phones can
be seen as an increasingly important information in-
terface between users and environments. These ad-
vances lay solid foundations of breakthrough technol-
ogy for indoor localization.

On this basis, we reassess existing localization
schemes and explore the possibility of using previous-
ly unavailable information. Considering user move-
ments in a building, originally separated RSS finger-
prints are geographically connected by user moving
paths of locations where they are recorded, and they
consequently form a high dimension fingerprint space,
in which the distances among fingerprints, measured
by footsteps, are preserved. In addition, we reform
the floor plan of a building to the stress-free floor
plan, a high dimension space in which the distance
between two locations reflects their walking distance
according to the real floor plan. The spatial similarity
of stress-free floor plan and fingerprint space enables
fingerprints labeled with real locations, which would
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be done only by site survey previously. These obser-
vations motivate us to design practical, flexible, and
rapidly deployed localization approaches with little
human costs and intervention.

In this study, we propose LiFS (Locating in Finger-
print Space), a wireless indoor localization approach.
By exploiting user motions from mobile phones, we
successfully remove the site survey process of tradi-
tional approaches, while at the same time, achieve
competitive localization accuracy. The key idea behind
LiFS is that human motions can be applied to con-
nect previously independent radio fingerprints under
certain semantics. LiFS requires no prior knowledge
of AP locations, which is often unavailable in com-
mercial or office buildings where APs are installed by
different organizations. In addition, LiFS’ users are in
no need of explicit participation to label measured da-
ta with corresponding locations, even in the training
stage. In all, LiFS transforms the localization problem
from 2D floor plan to a high dimension fingerprint
space and introduces new prospective techniques for
automatic labeling.

To validate this design, we deploy a prototype sys-
tem and conduct extensive experiments in a middle-
size academic building covering over 1600m?. Exper-
iment results show that LiFS achieves comparable
location accuracy to previous approaches even with-
out site survey. The average localization error is 5.8
meters and can be reduced to be about 2 meters by
incorporating trajectory matching, while the room-
level localization error is about 11%.

The rest of the paper is organized as follows. We
discuss the state-of-the-art of indoor localization tech-
nology and multi-dimensional scaling in Section 2.
Section 3 presents the system overview of LiFS. The
construction of stress-free floor plan is introduced in
Section 4. Section 5 shows how to transform RSS
fingerprints into high-dimension fingerprint space. In
Section 6, we promote several techniques to establish
the relationship between stress-free floor plan and
fingerprint space. The localization scheme is intro-
duced in Section 7. The prototype implementation
and experiments are discussed in Section 8. Design
details and limitations are discussed in Section 9. We
conclude the work in Section 10.

2 RELATED WORK
Wireless Localization

In the literature of indoor localization, many tech-
niques have been proposed in the past two decades.
Generally, they fall into 2 categories: fingerprinting-
based and model-based.

Fingerprinting-based techniques. A large body
of indoor localization approaches adopt fingerprint
matching as the basic scheme of location determina-
tion. The main idea is to fingerprint the surrounding
signatures at every location in the areas of interests
and then build a fingerprint database. The location
is then estimated by mapping the measured finger-
prints against the database. Researchers have striven
to exploit different signatures of the existing devices

or reduce the mapping effort. Most of these techniques
utilize the RF signals such as RADAR [2], Horus [41],
improved upon RADAR, LANDMARC [22], Active-
Campus [11], PlaceLab [16] and OIL [26]. Surround-
Sense [1] performs logical location estimation based
on ambience features including sound, light, color,
WiFij, etc. In two recent works, FM radio [5] and Chan-
nel Frequency Response [30] are explored to use as
fingerprints. All these approaches require site survey
over areas of interests to build a fingerprint database.
The considerable manual cost and efforts, in addition
to the inflexibility to environment dynamics are the
main drawbacks of fingerprinting-based methods.
Model-based techniques. These schemes calcu-
late locations based on geometrical models rather
than search for best-fit signatures from pre-labeled
reference database. The prevalent log-distance path
loss (LDPL) model, for instance, builds up a semi-
statistical function between RSS values and RF propa-
gation distances [6], [17]. These approaches trade the
measurement efforts at the cost of decreasing local-
ization accuracy. [35] investigates several approaches
based on AP locations and radio propagation models,
and reports average error greater than 5 meters. Apart
from power-distance mapping, Time of Arrival (ToA)
[42], Time Difference of Arrival (TDoA) [27], and
Angle of Arrival (AoA) [23], [44] have brought a host
of alternative perspectives to capture geometric rela-
tionship between signal transmitters and receivers.

Simultaneous Localization and Mapping (SLAM)

While the robotics and computer vision communities
have developed techniques for jointly estimating the
locations of a robot and a map of an environment,
the nature of wireless signal strength prohibits the
use of standard SLAM techniques [21], [34]. These
techniques typically depend on two facts: 1) the ability
to sense and match discrete entities such as landmarks
or obstacles detected by sonar or laser range-finders;
2) precisely controlled movement of robots to depict
discovered environments. Both of them are unreason-
able for smartphone-based localization [37].

WiFi-SLAM [9] uses the Gaussian process latent
variable models to relate RSS fingerprints and models
human movements (displacement, direction, etc.) as
hidden variables. When a small portion of RSS mea-
surements are tagged with the real coordinates, semi-
supervised localization [28] estimate the others’ loca-
tions according to RSS dissimilarity. GraphSLAM [12]
further improves WiFi-SLAM regarding computing
efficiency and relying assumptions. Similar in lever-
aging human mobility, Zee [29] devises techniques
for accurate dead-reckoning using smartphones and
places recorded user paths into an indoor map ac-
cording to the constrains imposed by the map (e.g.,
that a user cannot walk through a wall or other barrier
marked on the map), such that wireless fingerprints
are related to locations.

Different from previous SLAM solutions and [29],
LiFS only measures walking steps and is free of
using dead-reckoning based on noisy inertial sensors
of smartphones. In the proposed solution, neither
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digital compass nor gyroscope is involved. Instead,
we use accelerometer (as pedometer) to record only
the number of footsteps, which can be accurately mea-
sured by nowadays smartphones, with respect to the
displacement and directions of users’ movements. Lo-
cations are computed through the deterministic MDS
method. The mapping of discovered world and the
ground-truth one has not been specifically discussed
in SLAM and the solution relies on global references.
In contrast, LiFS exploits the geometry of fingerprint
space to construct fingerprints databases.

Multidimensional Scaling

Multidimensional scaling (MDS) [4] is a set of related
statistical techniques often used in information visu-
alization for exploring similarities or dissimilarities in
data. An MDS algorithm starts with a matrix of item-
item dissimilarities, then assigns a location to each
item in d-dimensional space, where d is specified a
priori. For sufficiently small d (d = 2, 3), the resulting
locations may be displayed in a 2D graph or a 3D
structure.

Seeing inter-device distances as a metric of dis-
similarity, many approaches of network localization
adopt MDS as a tool for calculating the locations of
wireless devices [8], [31]. For example, in wireless
sensor networks, sensor nodes are capable of measur-
ing the distances to neighboring nodes by RSS, ToA,
TDoA, etc. MDS is used to assign a coordinate to each
node such that the measured inter-node distances
are as much preserved as possible. Some researchers
propose MDS to figure out WiFi AP locations [14]. In
their approach, AP-AP distances are determined by
a radio attenuation model. Although being similar to
our solution in terms of the usage of MDS, it is neither
for user localization nor fingerprinting-based.

3 OVERVIEW
3.1 Data Collection

User participation is essential in the initial period at
the online stage. Untrained users walk in a building
following daily activities. Mobile phones, carried by
users, collect WiFi RSS characteristics (a.k.a. RSS fin-
gerprints or signatures) at various locations along user
movement paths, and the walking distances are also
recorded. Walking distances are measured as foot-
steps from the readings of integrated accelerometers
in mobile phones. Similarly, accelerometers also infer
the starting and finishing moments of user paths.
LiFS harnesses the walking distance between two end-
points (denoted by corresponding fingerprints) along
a user path to establish the geographical relationship
among fingerprints. During data collection, users can
be even unaware of the collection task in which they
are actually involved.

3.2 System Architecture

In this subsection, we present the system architecture
of LiFS, as shown in Figure 1. The working process of
LiFS consists of two phases: training and operating.

Training

Floor Plan

Raw RSS Data

Stress-free Floor Plan Fingerprint Space
Mapping

Location
Estimation

<
5 AP Locations Stairs > Corridors % Inaccessible areas

Fig. 2: Floor plan of the experiment field.

The major output of training phase is a fingerprint
database in which an RSS fingerprint and its cor-
responding location are associated. The fingerprint
database is further used in operating phase to pro-
cess location requests. We describe the training and
operating phases in detail next.

Training Phase. The core task of training phase is
to build the fingerprint database. We divide this task
into 3 steps: (1) transforming floor plan to stress-free
floor plan; (2) creating fingerprint space; (3) mapping
fingerprints to real locations.

A floor plan shows a view of a building struc-
ture from above, including the relationships between
rooms, spaces, and other physical features. The geo-
graphical distance between two locations in a floor
plan is not necessary to be the walking distance
between them due to the block of walls and other
obstacles. Hence, we propose stress-free floor plan,
which puts real locations in a floor plan into a high
dimension space by multidimensional scaling (MDS)
[4], such that the geometrical distances between the
points in the high dimension space reflect their real
walking distances. Through stress-free floor plan, the
walking distances collected by users can be accurately
and carefully utilized.

Fingerprint space is a unique component in LiFS,
different from traditional approaches. According to
the inter-fingerprint distances, MDS is used to create
a high dimension space, in which fingerprints are
represented by points, and their mutual distances
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Fig. 3: Floor plan with sample locations.

are preserved. In traditional approaches, fingerprints
are geographically unrelated, losing the possibility of
building fingerprint space.

In fingerprint database, fingerprints are associated
with their collecting locations (i.e., fingerprints are
labeled with locations). Such associations are achieved
by mapping fingerprint space (fingerprints) to stress-
free floor plan (locations). In LiFS, the fingerprint
database is updated continuously according to newly
collected data, such that the database reflects the up-
to-date radio signal distribution. As shown in Figure
1, fingerprint database, as the core component, con-
nects training and operating phase.

Operating Phase. When a location query comes,
usually an RSS fingerprint sent by a user, LiFS takes
it as a keyword and searches the fingerprint database.
The best matched item is viewed as the location
estimation and sent back to users. To find the best
matches, many searching algorithms can be used.
In this design, we adopt a simple one, the nearest
neighbor algorithm. More specifically, we assume that
a fingerprint f is collected at the same location as f’, if
[’ is the most similar to f in the fingerprint database.
Besides the classical nearest neighbor algorithm, we
also propose a continuous trajectory matching scheme
to reduce the localization error caused by the finger-
print ambiguity for mobile users. In this scheme, a
user’s location is estimated based on his/her moving
trajectory, instead of one single RSS report, by measur-
ing successive RSSs and the accompanying mobility
information when a user is moving.

4 STRESS-FREE FLOOR PLAN

In architecture and building engineering, a floor plan
is a diagram, showing a view from above of the rela-
tionships between rooms, spaces, and other physical
features at one level of a structure. Dimensions are
usually drawn between the walls to specify room size
and wall length. The floor plan of our experiment
field is shown in Figure 2. The geographical distance
between two locations in a floor plan does not nec-
essarily equal to the walking distance between them
due to the block of walls and other obstacles. Hence,
ground-truth floor plans come into conflict with the
measured distances during data collection. Figure 2
also illustrates the distance mismatch phenomenon.
The walking distance of two marked locations is
greatly larger than their straight-line distance since
walls are not easily passed through by users.

To address the distance mismatch problem, we
propose the concept of stress-free floor plan. We sample
an area of interests at the intersecting locations of a
mesh of grids in a floor plan, as shown in Figure 3.

Fig. 4: Moving paths.

The length | of a grid can be 1-3 meters according
to the general performance of fingerprinting-based
localization methods. Overmuch large or small values
of [ will decrease location accuracy or gain marginally
or even scarcely. In our experiment, we set [ = 2m. By
calculating the distances between all pairs of sample
locations, we have the distance matrix D = [d;;],
where d;; is the walking distance between two sample
locations p; and p; in the floor plan. Using D as an in-
put, MDS maps all p;s into a d-dimension Euclidean s-
pace. In a stress-free floor plan, the Euclidean distance
between a pair of points reflects the walking distance
of their corresponding locations in a real floor plan.
Stress-free floor plans are often hardly embeddable
in a low dimension space due to excessive distance
constraints. For the convenience of observation, we
set d = 2,3 and the resulting stress-free floor plans
in 2D and 3D visualization are shown in Figure 5
and 6, respectively, where points with the same color
represent the sample locations from the same area.

5 FINGERPRINT SPACE

This section discusses the techniques for constructing
fingerprint space based on the data collected by users.

5.1

Suppose m APs in an area A. For each location in 4,
the RSS fingerprint at this location can be denoted as
avector f = (s1,82,...,8m), where s; is the RSS of the
ith AP and s; = 0 if the signal of the i*" AP cannot
be detected. Let d;; denote the distance between the
positions of f; and f;. We set d;; = +oo temporarily if
the distance record between f; and f; is not available.
We measure d;; as follows. Suppose at somewhere a
mobile phone records f;; Along with walking users, it
moves to another position and records f;. In this case,
d;; is the number of footsteps during the movement.

RSS fingerprints are collected during users’ routine
indoor movements. Users walk in a building and their
mobile phones record RSS fingerprints along their
walking paths , as well as the footsteps between every
pairs of two consecutive fingerprints. As illustrated in
Figure 4, fingerprints (denoted as squares, circles, or
triangles) are recorded along three walking paths and
the line segments between fingerprints indicate their
distances in terms of footsteps.

After fingerprint collection, we have a set of finger-
prints F' = {f;,i = 1...n} (nis the number of records)
and a distance matrix D" = [d;;], both of which are
essential for constructing the fingerprint space.

Fingerprint Collection
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Fig. 5: 2D stress-free floor plan.
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Fig. 7: The acceleration pattern for 10 steps.

5.2 Pre-processing

As user movements are usually arbitrary and ruleless,
walking paths might be intersectant and accordingly
the fingerprints might be overlapped. Hence data pre-
processing is necessary to merge similar fingerprints,
which means they are likely from the same (or very
close) locations in the floor plan.

Generally, for two fingerprints f; = (s1,$2,...,8m)
and f; = (ti,t2,...,tm), define RSS difference (dis-
similarity) 6 between f;, f; as follows:

6 = fi — [ ||1:Z\Sk—tk| (1)
k=1

For f; and f;, if their dissimilarity d;; is smaller than
a predefined threshold e, then they are merged as a
same point in the fingerprint space to be generated.
Otherwise, if 0;; > ¢, f; and f; are treated as two
different points. The determination of € is based on
the fingerprint samples collected at a given location
(when phones are not moving). Several other works
like [37], [39] adopt the similar solution as well.
Hence, € represents the average maximum dissimilar-
ity of fingerprints from a distinct location, which is
then feasible for merging fingerprints from the same
(or close) locations and distinguishing fingerprints
from different locations. In practice, the calculation of
e can be automatically finished by exploiting finger-
print measurements from stationary users, who can be

-20 -10 0 10 20

Fig. 6: 3D stress-free floor plan.

detected via inspecting the inertial sensor data from
their mobile phones.

Moreover, the raw data from accelerometer read-
ings are pre-processed to obtain walking distance
measurements. Theoretically the distance traveled can
be calculated by integrating acceleration twice with
respect to time. However due to the presence of noise
in accelerometer readings, error accumulates rapidly
and can reach up to 100 meters after one minute of
operation [38].

To avoid accumulation of measurement errors, we
adopt the individual step counts as the metric of walk-
ing distance instead, like a pedometer. Figure 7 shows
the magnitude of acceleration during walking for ten
steps. We employ a local variance threshold method
[13] to detect the number of steps. The method is
based on filtering the magnitude of acceleration fol-
lowed by applying a threshold on the variance of
acceleration over a sliding window. Step counting is
accurate and in our experiments the measured steps
are almost exactly what they actually are.

We understand that stride lengths vary from per-
son to person. Previous solutions like [37] assume
a fixed stride length of a person according to his
weight and height, and achieve accurate results. In
our solution, the variation of stride length can be
efficiently alleviated through the fact that non-metric
MDS can tolerate measurement errors gracefully, due
to its over-determined nature [31], [32]. In addition,
recently, robust trajectory estimation schemes have
also been proposed for crowdsourcing-based applica-
tions, which can be incorporated in LiFSto alleviate
the negative influence of crowdsourced abnormal user
trajectories from multiple users [43].

5.3 Fingerprint Space Construction

To construct an accurate and informative fingerprint
space, adequate fingerprints and their distance mea-
surements are required. In our experiments, the op-
erating phase of LiFS starts when the number of col-
lected fingerprints reaches 10 times of the number of
the sample locations in the construction of stress-free
floor plans. Another possible way is to assign the first
several days of LiFS’ pilot run for training because
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Fig. 8: 2D fingerprint space.

routine activities exhibit certain repetitiveness day af-
ter day. Actually the running of operating phase does
not mean the end of data collection. It is reasonable
to select a less conservative starting point and refine
the current fingerprint database uninterruptedly in
operating phase according to newly coming data.

If no user path passes through a pair of fingerprints
fi and f;, the direct measurement of the distance
d;; is unavailable. However, all user paths constitute
a network of fingerprints in which f; and f; are
connected via more than one user paths. Hence, the
value of d;; can be approximated as the length of the
shortest path between f; and f; by passing several
user path segments. Note that some measured values
of dj; can also be updated under this intuition. For
example, if d;; > dj, + d;; for some k, then d;; is
updated to dj;, + dj ;. Such updates can eliminate the
negative distance estimates caused by the circuitous
paths or the adverse (to LiFS) user habit of pacing
back and forth.

We adopt the Floyd-Warshall algorithm [10] to com-
pute all-pair shortest paths of fingerprints. It takes
O(n?®) running time and n is the number of finger-
prints. For convenience, we still use D’ to denote
the distance matrix after the above-mentioned refine-
ments on the original D’. So far D’ is dense and
meaningful.

Similar to constructing stress-free floor plan, using
D’ as an input, MDS maps all f; into a d-dimension
Euclidean space. Figure 8 and 9 demonstrate the 2D
and 3D visualization of fingerprints, respectively.

6 MAPPING

If all fingerprints correspond with the sample loca-
tions in the stress-free floor plan, we are able to
label each fingerprint with a real location. Such corre-
spondence comes from the spatial similarity between
stress-free floor plan and fingerprint space.

6.1 Feature Extraction
6.1.1 Corridor Recognition

Generally speaking, corridors in a building connect
all other office rooms like hubs in a network. When
people walk from one room to another, they need

Fig. 9: 3D fingerprint space.

to pass through corridors. Such characteristics in real
life are reflected in both stress-free floor plan and
fingerprint space, as shown in Figure 5, 6, 8, and
9. We observe that fingerprints collected at corridors
reside in core positions in fingerprint space. In terms
of graph centrality [24], these fingerprints have a
relatively large centrality values.

In graph theory, vertex centrality can be valued by
degree, betweenness, closeness, etc [24]. In our con-
text, we adopt the betweenness centrality to identify
corridor fingerprints. Conceptually, vertices that have
a high probability to occur on a randomly chosen
shortest path between two randomly chosen nodes
have a high betweenness. Formally, in a graph G =
(V,E) of vertices V' and edges E, the betweenness
centrality of a vertex v € V' is defined as

>

s#EVALEV

ost(v)

Ost

B(v) = 2)

where o, is the number of shortest paths from s to ¢,
and o (v) is the number of shortest paths from s to
t that pass through a vertex v.

Our solution first recognizes the fingerprints col-
lected in corridors in the fingerprint space. According
to the distances among fingerprints, we build the
Minimum Spanning Tree (MST) [7] T that connects
all fingerprints in F, as illustrated in Figure 10. In
addition, we compute the vertex betweenness for
all vertices (fingerprints) in 7' and then distinguish
fingerprints from corridors and other areas based
on a betweenness watershed. The betweenness wa-
tershed value is determined by two parameters: 1)
the area ratio r. of corridors to entire floor plan
(i.e., r. = size(corridor)/size(all)), which is available
when generating the stress-free floor plan; and 2)
the largest gap of betweenness values of fingerprints.
The area ratio r. is used to cut a feasible interval of
the betweenness distribution and then the watershed
is finally determined by finding the largest gap of
betweenness values in the feasible interval. In this
sense, the betweenness watershed is an automatically
determined value that depends on the specific scenari-
o settings. In our experiment, the resulting cumulative
distribution of betweenness is shown in Figure 11.
Roughly, nearly 8.6% have their betweenness larger
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Fig. 10: MST in 3D fingerprint space.

than 8,200; while others all less than 7,000 (shown in
Figure 11). Obviously two groups of fingerprints are
formed and we regard the one of larger betweenness
as coming from corridors considering the structure
shown in Figure 2. Let F, denote the set of fingerprints
that are estimated collected from corridors.

6.1.2 Room Recognition

Removing F. from the fingerprint space, we observe
from both Figure 8 and 9 that the remaining fin-
gerprints form several clusters that are apparently
spatially separated. To gather the fingerprints that are
sufficiently close to each other, the k-means algorithm
[19] (a classic clustering method) is chosen due to
its computational efficiency. Thus all fingerprints in
F — F, are classified into & clusters (denoted by Fpg,,
i = 1,2,...,k) and in the k-means algorithm k is
set to be the number of rooms in real floor plan.
After clustering, all fingerprints of a same Fp, are
considered from the same real rooms, though we
cannot tell which specific room they are from. The
next subsection focuses on this mapping problem.

6.1.3 Reference Point Mapping

After characterizing corridors and rooms, we are able
to establish relationships between stress-free floor
plan and fingerprint space, and we think doors are
the keys. Particularly, we are intended to identify the
fingerprints that are collected near doors. We define
f; and fl’ as follows:

(fis fi) = argmin || f—f"|, @)
feFRi 7f,ch
where || - || denotes the 2-Norm in the fingerprint

space.
Specifically, f; and f! locate as close as possible to a
door in the floor plan but in opposite sides (f; inside
the room and fz’ outside the room). Let Fp = { fz’ J1=
1,2,..., k} denote the set of key corresponding points.
Actually, the fingerprints in Fp can be organized in
a chain in the MST T, as shown in Figure 10. So we
present Fpp in a vector form as Fp = (fi1, f2,..., fx).
While in the stress-free floor plan, let Pp = (p1,p2,
..., pr) denote the set of sample locations in the
corridor that are the closest to every door. The order
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Fig. 11: Betweenness distribution.

of sample locations in Pp are in accord with their
appearance from one side to the other side along the
corridor. There are two possible ways (01,02 : Fp —
Pp) mapping Fp to Pp:

o1 fi = D
09t fi = Dh—it1-

In fact only one of oy and o3 is the ground-truth. We
use the distance constraints in both stress-free floor
plan and fingerprint space to eliminate the ambiguity.
We define [ = (ll,lg,...,lkfl) and lz :H DPi+1 — Di H
Similarly, I’ is defined as I’ = (14,15,...,0,_;) and
I =|| fit1 — fi ||- The values of I; and I} can be
determined according to the distance matrix D and
D', respectively. The cosine similarity of [ and 1,
denoted by s, is calculated by

-0
e

While the similarity of [ and the reverse of I/, denoted
by so, is also calculated. If s; > s3, we adopt oy,
otherwise o2. Without loss of generality, oy is chosen
in the following discussion.

Up to now, a group of fingerprints (F'p) are labeled
with real locations. The relationship between Fp and
Pp can be further used to map other fingerprints to
real locations.

6.2 Space Transformation

In this section, we discuss how to map fingerprints
(fingerprint space) to locations (stress-free floor plan).
We initially try floor-level transformation and then
turn to room-level transformation for better accuracy.

6.2.1 Floor-level Transformation

From the visualization of the stress-free floor plan and
the fingerprint space, we observe that they are struc-
turally similar but under trivial variations, including
translation, rotation, or reflection. We use a transform
matrix to solve such trivial variations.

Suppose a fingerprint f; € Fp has its coordinate in
the form of z; = [z} 2? ... 29T, where d is the dimen-
sion of the fingerprint space. And its correspondin§
location p; € Pp has a coordinate y; = [y} v? ... v{]
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in the stress-free floor plan. Let A denote the d x d

transformation matrix and B = [by by ... bg]T. We
have k = |Fp| following equations
y; = Ax; + B. (4)

We re-write the k equations as

HiZ = Gi, (5)

where H; = [z} 1], 2 = [A B]T, and G; = y}.
Combining % equations as a matrix equation, we have

Hz =G, (6)

where H; and G; are the i'" row of H and G, respec-
tively.

The least square estimation [3] of above k equations
gives

z=(H"H)'H'G, )

which minimizes | G — Hz ||.

So far, the transformation matrices A and B can
be determined by Z; thus we are able to map any
fingerprint to the stress-free floor plan with a fixed
location. For a fingerprint f with the coordinate =z =
[zt 22 ... 27T, the sample location that is closest to
Ax + B is estimated as the real location of f.

6.2.2 Room-level Transformation

From the experiment results, the unsatisfactory per-
formance of floor-level transformation motivated us
to design a fine-grained mapping solution. As pre-
viously mentioned, doors and fingerprints near doors
are related, which further indicates that the rooms and
the fingerprints from corresponding rooms are also
related since a door belongs to only one room (ie.,
the mapping from doors to rooms is injective). This
fact enables room-level mapping instead of floor-level
mapping.

Using MDS, the fingerprints from one room are
transformed to d-dimension space. In the same way,
the sample locations from the corresponding room
are also mapped to d-dimension stress-free floor plan.
Using doors and room corners as reference points, the
fingerprints and sample locations are linked determi-
nately by the transformation matrix above discussed.
We perform the above step one room by one room
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and finally achieve a full mapping for all fingerprints
after multiple steps of room-level transformation.

7 LOCALIZATION

Basically, LiFS performs fingerprint database look-
up to response to current location query using the
nearest neighbour algorithm. User’s current location
is estimated as the location of which the fingerprints
pre-stored in the database are the most similar to the
query measurements in terms of Euclidean distance.
Under this scheme, LiFS yields average localization
error of 5.9 meters and maximum error of about 16
meters, as shown in Fig. 20.

The causes of insufficient accuracy lie in two folds:
1) the fingerprint databased generated by automatic
crowdsourcing is naturally less accurate than that
constructed by manual efforts. 2) the fingerprints from
distant locations could be similar and thus difficult
to distinguish due to complex indoor environments,
which is referred to as fingerprint ambiguity in the
literature [40]. While the former is inevitable to crowd-
sourced site survey, we propose a continuous tra-
jectory matching scheme to reduce the localization
error caused by the fingerprint ambiguity for mobile
users. The idea is similar to other sequence matching
approaches for GSM localization [25], [45].

We record successive RSS measurements instead of
only single report when a user is moving. Such contin-
uous fingerprints represent the moving trajectory of
a mobile user. When performing the localization, we
search for a series of locations L = {Lq, Lo, -+, Li}
that minimize the integral distance as follows:

/
L

k
arg min = 1, 8
9, EF;"f 1.l ®)

where f; is the ith RSS vector in the trajectory mea-
surements, and f; indicates the fingerprint of loca-
tion L; stored in fingerprint database F. When the
matched trajectory is determined, the latest location,
Ly, is returned as the current estimation.

Finding the best-fitted trajectory, however, incurs
exponential computation cost. To reduce the search
space, we leverage the dead-reckoned distance be-
tween successive measurements and consider only the
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candidate locations satisfying the distance constraints.
By doing this, the number of candidate locations are
largely reduced. Assume that the the number of candi-
date locations of the ith measurement in the trajectory
is reduced from n to a limited value, denoted as
¢;, then the computational complexity of the trajec-
tory matching decreases from O(n*) to O(n - ck71),
where k£ is the record number of the trajectory and
¢ = max{¢,i = 2,---,k}. Typically, ¢ is a small
number (usually no more than 10) given the distance
constraints. In addition, a small value k (e.g., 2 to
4) is demonstrated to generate considerable accuracy
improvement. Hence in practice, the complexity can
be approximately treated as O(n) since the factor c#~*
is equivalent to a constant. In other words, as demon-
strated in the experiments, the trajectory matching
scheme would not cause heavy computational cost,
yet can significantly improves accuracy. Since we have
conducted inertial sensing to count footsteps as dis-
tance estimation in fingerprint space (as expounded in
Section 5, the trajectory matching scheme that rely on
successive RSS measurements and continuous dead-
reckoning does not incur too much extra cost. The
performance benefits are provided in Section 8.

8 EXPERIMENTS
8.1

We develop the prototype of LiFS on the increasingly
popular Android OS and on two Google Nexus S

Experiment Design

Fig. 15: MST of corridor points.
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phones which support WiFi and accelerometer sen-
sors. We conduct the experiment on one floor of
a typical office building covering 1600m?, with the
length of 70m and width of 23m. As shown in Figure
2, the building contains 16 office rooms, of which
5 are large rooms of 142m?, 7 are small ones with
different sizes and the other 4 are inaccessible. Totally
m = 26 APs are installed, of which 15 are with known
locations and are denoted in Figure 2.

We sample the experiment floor plan approximately
every 4m? (2mx2m grid) and obtain 292 sample loca-
tions over all accessible areas. Although this density
is not a consistently best solution for all situations (in-
cluding corridors, office rooms, meeting rooms, etc.,)
however, it provides reasonable positioning accuracy
for general office buildings. Afterwards, we conduct
MDS and the results in 2D and 3D are depicted in
Figure 5 and 6, respectively.

The experiment lasts five hours by 4 volunteers.
Each volunteer holds a mobile phone in hand and
walk through areas of interests. LiFS records the ac-
celerometer readings to count walking distances and
picks up RSS values along the paths. Fingerprints
are recorded every 4~5 steps during moving, which
corresponds 2~3m under normal walking styles. Ac-
celerometers work in two different frequencies: when
detecting movements, they record sensory data with
short intervals; otherwise a relatively long interval is
adopted. WiFi is only scanned when the users are
detected to be moving at a frequency of about 2Hz.

Totally 600 user traces along with 16,498 fingerprint
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Fig. 18: Fingerprints clusters vs. floor plan rooms.

records are collected. These traces cover most of the
areas of the experimental field. The small and large
rooms are covered by at least 5 and 10 paths, respec-
tively. In addition, the corridor is covered by more
than 500 paths. Different paths vary not only in the
areas they covered but also in lengths. The raw data
are preprocessed and refined according to the RSS
values and stability over time. After that, we select
a half of these data for training and use the rest in
operating phase.

8.2 Performance Evaluation
8.2.1 Fingerprint Space Generation

Before generating the fingerprint space, we obtain
fingerprint points (i.e., points in the fingerprint space)
and their pairwise distances from raw sensory data.
Each point has a set of fingerprints. Fingerprints
are distinguished by their RSS dissimilarities. Fin-
gerprints with similar RSS features are attached to
the same fingerprint points while fingerprints with
large dissimilarities are sticked to different points.
As user traces may be overlapped in the floor plan,
fingerprints collected from different traces may be
attached to the same point in the fingerprint space.
In addition, fingerprints from a same sample location
may be bounded to different points due to the RSS
fluctuation. Hence, the threshold value of ¢ can affect
the fingerprint space generation a lot.

To obtain an appropriate ¢ for generating finger-
print space, we first collect a series of fingerprints
from the same location and calculate the maximum
dissimilarity of these fingerprints. This procedure is

repeated over a set of distinct locations (randomly
selected), which results in a set of dissimilarity values.
Finally we set the threshold epsilon as the mean
value of these dissimilarity values, which is supposed
to represent the average maximum dissimilarity of
fingerprints from one distinct location.

Location error and room error defined as follows are
used to examine the effects of e.

Location_Error = ||L(f) — L' (f)|],

1 /
Room_Error = N Z I(R(f) # R'(f)),

fer

where f is a fingerprint, L(f) (R(f)) and L'(f) (R'(f))
represent the ground truth location (room) in floor
plan and in fingerprint space respectively, N is the
number of fingerprints, I’ is the set of fingerprints,
and I is an indicative function. For each fingerprint,
its ground truth location (room) in fingerprint space is
determined as the labeled-location of those predomi-
nant fingerprints with the same location (room) label.

We plot the cumulative distribution (CDF) of lo-
cation error in Figure 12. The impact of ¢ on room
error and the number of points are illustrated in
Figure 13. As from the results, location error and room
error both increase when e changes from 10 to 100,
while the number of points decreases from about 1,600
to 1. Too small or large values of € deteriorate the
performance as fingerprints will be wrongly clustered.
We choose € = 30 for further experiments, since 80%
of fingerprints are accurate when e = 30.

To obtain walking distances of fingerprints, we
first evaluate the step counts estimation using the

©)
(10)
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local variance threshold method. Paths with different
lengths (from 5 to 200 footsteps) are designed for
testing. Experiment results show an error rate of
2% in the number of steps. To further validate the
performance under relatively long traces in different
scenarios, we collect accelerometer data from differ-
ent users by letting them walk a 300-step walking
with their mobile phones in hand, in pockets, or in
bags and perform the step counting algorithm. The
results show that errors of 90% of all testing cases
are limited within 5 steps, which is fairly accurate
and suffices the requirements of distance estimation
for LiFS. Although different users have various step
sizes which result in different distances of the same
number of steps, it will be shown later that MDS has
outstanding performance in tolerance to measurement
errors. The accumulative error of long paths brings
about unobvious performance drop as only path seg-
ments (inter-fingerprint distances) are used by MDS
and the distance of far-away points are calculated by
aggregating many paths.

Totally, 795 points are generated for fingerprint
space when ¢ = 30. First we assign the pairwise
distances of these points with their measured walk-
ing distances and thus we get a connected network.
By performing the Floyd-Warshall algorithm on the
network, we obtain all the pairwise distances of 795
points. Finally, we conduct 2D and 3D MDS on these
points and the results are shown in Figure 8 and 9,
where each color denotes one room (or the corridor) in
the floor plan. As seen from the figures, real floor plan
structure is well reflected by MDS under constraints
of walking distances.

8.2.2 Mapping Performance

We build the MST of the fingerprint points (Figure
10) to calculate the betweenness centrality of each
point. We sort all points by betweenness centrality
in Figure 11 and select those points with higher
betweenness than the watershed value (8,000 in our
experiments). All selected points are estimated from
the corridor recognition. As illustrated in Figure 14,
most of the candidate corridor points are correctly
extracted. However, some room points are also mixed
among them and on the other hand, some true corri-
dor fingerprints are not included. Hence, we refine the

1
08|
3
o 0.6 [
o
ks
S 04t
1)
T
[=9
02— .
LiFS
RADAR
0 ; ; ; ; ;
0 3 6 9 12 15 18

Error (m)

Fig. 20: CDF of localization error.

corridor recognition by iteratively performing MST
and sifting low betweenness points until the MST of
the remaining points form a single line, i.e., each point
has at most one parent and one child in the MST. The
final corridor points are depicted in Figure 15.

The rest of fingerprint points, most of which are
actually collected from rooms, are then clustered into
12 clusters (equal to the room number) using k-Means.
The clustering results are shown in Figure 16, where
each different color indicates a cluster. The figure
shows that most rooms can be recognized correctly
while only a small portion of corridor points are
mixed.

For each cluster, we identify a point in the corridors
that has the shortest distance to all the points in a
cluster as the reference point. The 12 reference points
for 12 clusters are shown in Figure 17. Some clusters
may take the same point as its reference point, which
is caused by the clustering errors. The reference points
in the floor plan which link rooms to corridors are also
presented in Figure 17. The reference point sequences
of floor plan and fingerprint space are [ = {2.37, 3.36,
9.40, 1.18, 1.16, 8.07, 1.17, 3.82, 2.51, 2.55, 1.25} and
'={0.33, 2.12, 12.98, 1,31, 1,31, 10.17, 1.24, 10.17, 1.24,
5.99, 3.69, 1.18, 0} respectively. Let I be the reverse of
I'. The cosine similarities of / and !’ and [ and {"” are
s1 =0.97 and s; = 0.67, respectively. Since s1 > so, I
is adopted.

Up to now, the corresponding relationship of clus-
ters to rooms is achieved. We then conduct the room-
level transformation below. To understand the cluster-
room mapping, we plot the 2D MDS results of each
cluster and each room in Figure 18. The mapping
relations of 12 clusters and their corresponding rooms
are also illustrated in Figure 18. As seen from Figure
18, the stress-free rooms are the same as in the floor
plan while the 2D fingerprint points especially those
from small rooms are a bit rambling. This is because
the points are from multiple rooms and the measured
distances are of errors.

We then map the points in each cluster to sample
locations in its corresponding room by choosing the
nearest neighbor for each point. As shown in Figure
19, the mapping results are satisfactory as the map-
ping error of up to 96% points is lower than 4 meters
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and the average error of is only 1.33 meters.

8.2.3 Localization Error

Two metrics are designed for localization perfor-
mance: location error and room error. Location error is
defined as the Euclidean distance from the estimated
location to the ground truth one. Room error means
the error rate of fingerprints that are estimated to be in
incorrect rooms. As the final outputs of LiFS, the RSS
noises and mapping errors are simultaneously taken
into account. We emulate 8,249 queries using real data
on LiFS, and integrate all the localization results, as
shown in Figure 20. Each query contains a fingerprint
and LiFS returns an estimated location.

We also implement RADAR [2], a famous and
classical fingerprint-based localization system, and
compare its performance with LiFS on the same
experiment data. The reasons we choose RADAR
as our performance reference are that LiFS adopts
the standard algorithm of RADAR for fingerprint
matching and our main purpose of this part of ex-
periments is to show the location accuracy losses
due to crowdsourced site survey, rather than how
LiFS outperforms RADAR. As shown in Figure 20,
the average localization error of LiFS is 5.88 meters,
which is larger than RADAR (3.42 meters). The per-
formance of LiFS is comparable to the state-of-the-
art model-based approaches (larger than 5 meters)
reported in [35] and outperforms EZ (larger than
7 meters) [6]. As shown in Figure 20, localization
error of 80% of fingerprints is under 9 meters while
about 60% is under 6 meters. Some location errors are
caused by the symmetric structure of rooms, but they
are relatively small and will not contribute to room
error. This accuracy is fairly reasonable, though not
much impressive, as LiFS needs no site survey and
no specific infrastructure.

While the basic performance of LiFS is as expect-
ed to be no better than the classical RADAR since
the automatic generated radio map is inevitably less
accurate than the manually constructed one, the accu-
racy of the enhanced trajectory matching scheme for
mobile users is surprisingly promising. We examine
the effect of the trajectory matching scheme by letting
a user walk for a certain duration and then stop at a
specific spot. The RSS and inertial sensor data along
the user’s moving are record and fed to the localiza-
tion server while the spot which the user stopped at
is marked as the ground-truth location of this query.
We collect multiple query trajectories from different
users and integrate the localization results in Fig. 21.
As portrayed in Fig. 21, the average localization error
is about 2 meters and the maximum error is bound
within 8 meters, reduced by more than 60% and
50% respectively compared to the basic localization
scheme. The results not only outperform the RADAR
but also are comparable to several recent localization
schemes [18], [29]. While providing good accuracy,
the computing time is no significantly larger than
the nearest neighbor algorithm, since the accuracy
improvement can be gained by short trajectories of
several successive records. We also analyse the room

CDF
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Error (m)

Fig. 21: Localization error of trajectory matching
scheme (Denoted as LiFS-TM)

error of all queries on LiFS and find that the room
error rate is only 10.91%. As shown in Table 1, LiFS
requires less sensors (only accelerometer) while pro-
duces comparable accuracy compare to a number of
other localization methods. Such encouraging results
show the benefits of mobility assisted localization
and demonstrate the feasibility of LiFS in practical
applications.

9 DISCUSSION AND FUTURE WORK
9.1

Global reference points include the last reported GPS
location [6], AP’s location [20], similar surrounding
sound signature [1], feature-distinct public area, etc.
Though we do not use global reference point in this
design, they can be integrated into LiFS, resulting
in a more robust mapping solution, while LiFS still
works in case of deficient global information. Global
reference points are also the key in case of sym-
metric floor plans or multi-floor buildings. As the
crowdsourced data can be collected from multiple
floors in practice, part of our future work is to in-
corporate automatic floor identification by leveraging
global reference point as long with existing floor
localization methods such as skyloc [36]. Inspired
by recent works, the motion states of users walking
across different floors using elevators, escalators, or
stairs can be characterized by inertial sensors with
advanced detection algorithms [15], [33], [37]. These
motion states can further be incorporated into the
LiFS systems to determine floors.

Global Reference Point and Multiple Floors

9.2 Building Types

Our experiment field is one floor of an academic
building. The corridor in the middle connects all other
office rooms that lie on both sides of the corridor.
According to such layout, we try to distinguish cor-
ridors and rooms based on user traces. This solution
fits a majority of office buildings but may fail in large
open environments, such as hall, atrium, gymnasium,
or museum, in which users” movements are difficult
to characterize. We envision that the recognition of
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TABLE 1. Comparison with other localization systems.

Methodology  Sensors Floor Device Experimental Reported Median Reported  80%ile
plan diversity =~ Areas accuracy accuracy
. Whole buildin; 2m (small area 3.3m (small area
EZ [6] Ranging GPS No Yes (Office buildiné) 7m Elarge area) 10m (garge area))
Zee [29] Fingerprinting ~A/G/C* Yes No ?Onflf};c?égllﬁg}lﬁ o) 7m (using Horus) 13m (using Horus)
. o Whole buildi

Unloc [37]  Fingerprinting GPS/A/M/G/C No No (Off(i) CE &UK/[ alllf;g 1.7m . 3.5m
LiFS Fingerprinting A Yes No Whole building 4.5m (LiFS) 7m (LiFS)

(Office building) 1.5m (LiFS-TM) 3.5m(LiFS-TM)

* A - Accelerometer, G - Gyroscope, C - Compass, M - Magnetometer

different functions of areas helps to regionalize spaces
and model users” movements, as our future work.

9.3 Device Heterogeneity

Device heterogeneity is a long-standing common chal-
lenge of all WiFi fingerprint based indoor localization
techniques. Even under identical wireless environ-
ment, users with different devices would observe dif-
ferent wireless signals (and thus wireless fingerprints)
due to the hardware diversity. The problem become
even more prominent in crowdsourcing-based appli-
cations where a large amount of users with different
devices participate in data collection. In our work,
benefiting from user mobility information, LiFS is
supposed to tolerate different hardware devices better
than traditional methods because mobility provides a
new dimension of knowledge as an effective supple-
ment to wireless fingerprint itself. However, the issue
is not yet dedicatedly considered in current prototype
implementation, which leaves as our future work.

9.4 Floor Plan Construction From User Data

Floor plan plays an essential role in many indoor
pervasive and mobile applications, but its collection
and on-site calibration are inconvenient and usually
prohibitively costly for (indoor) map providers. Based
on the ideas of human-centric sensing and crowd-
sourcing, it becomes possible to generate floor plans
automatically. The movement records from a large
amount of contributing users can be used to depict
the interior layout of a building. Further, the functions
of a specified area (such as offices, corridor, elevator,
and stairs) can be identified from rich sensor hints ac-
cording to user behaviors. Such higher level semantics
enable niche targeting location-based services.

9.5 Social Significance of Mobility Observation

Automatic floor plan construction also assists the
research of human mobility and social behavior, in
which data collection is hard and the collected data
are less well labeled. Our system provides not only
sufficient mobility information, but also correspond-
ing meaningful comments. For example, through the
traces collected from one user in a certain duration,
we can investigate the lengths of stays at his office
and in the corridor, the total walking distance, as
well as the average speeds in the office and corridor
respectively, and etc.

10 CONCLUSION

By utilizing the spatial relation of RSS fingerprints,
we are able to create fingerprint space in which fin-
gerprints are distributed according to their mutual
distances in real world. On this basis, we design
and implement LiFS, an indoor localization system
based on off-the-shelf WiFi infrastructure and mo-
bile phones. The preliminary experiment results show
that LiFS achieves low human cost, rapid system
deployment, and competitive location accuracy. This
work sets up a novel perspective to cut off human
intervention of indoor localization approaches. Our
ongoing research focuses on making LiFS feasible
and pervasive to various applied environments and
buildings.
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