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Abstract—Most of existing indoor navigation systems work
in a client/server manner, which needs to deploy comprehensive
localization services together with precise indoor maps a prior.
In this paper, we design and realize a peer-to-peer navigation
system (ppNav), on smartphones, which enables the fast-to-deploy
navigation services, avoiding the requirements of pre-deployed
location services and detailed floorplans. ppNav navigates a user
to the destination by tracking user mobility, promoting timely
walking tips and alerting potential deviations, according to a
previous traveller’s trace experience. Specifically, we utilize the
ubiquitous WiFi fingerprints in a novel diagrammed form and
extract both radio and visual features of the diagram to track
relative locations and exploit fingerprint similarity trend for
deviation detection. We further devise techniques to lock on a
user to the nearest reference path in case he/she arrives at an
uncharted place. Consolidating these techniques, we implement
ppNav on commercial mobile devices and validate its performance
in real environments. Our results show that ppNav achieves
delightful performance, with an average relative error of 0.9 m in
trace tracking and a maximum delay of nine samples (about 4.5 s)
in deviation detection.

Index Terms— Peer-to-peer,
fingerprints.

indoor navigation, sequential

I. INTRODUCTION

HE past decade has witnessed the conceptualization

and development of smartphone-based indoor localization
and navigation. Various approaches based on WiFi [1], [2],
GSM [3], Sound [4], etc., have been proposed to enable
localization indoors and further provide navigation services to
end users, on the basis of path planing algorithms in addition
to precise indoor maps.

While qualified of providing navigation service once
appropriately deployed, such localization-enabled navigation
systems are limited in two folds. First, they highly rely
on an accurate and stable localization service pre-deployed
by specific provider, which entails great challenges since
current indoor localization systems are not yet ready for
wide and easy deployment. Despite of numerous efforts on
indoor localization, the applicability of previous attempts,
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either model-based or fingerprint-based, is significantly lim-
ited by labor-intensive deployment and insufficient accuracy.
For example, WiFi fingerprinting-based localization requires
remarkable initial efforts for bootstrapping yet yields pretty
mediocre accuracy [1], [2], [5]. Second, a meticulous indoor
map is always required to provide precise building structure
and semantic place information, yet is hard and costly to
acquire. Mainstream map providers such as Google Maps
and Baidu Map currently supply indoor maps only in limited
areas like large malls and airports. And these maps are
generated mainly from manual construction by expert engi-
neers. Despite of some approaches proposed to crowdsource
indoor maps [6], [7], a sustainable incentive mechanism is yet
required and the quality of the resulting data is not guaranteed.
To conclude, previous navigation systems work in a classical
client/server (C/S) thinking, which significantly depend on pre-
deployed comprehensive location and map services and have
yet to be achieved. A lightweight, efficient, and easy-to-deploy
approach is strongly urged for practical uses.

In this paper, we specify an alternative Peer-to-Peer (P2P)
navigation mode, which enables efficient navigation without
resorting to pre-deployed location service or the availability
of indoor maps. As shown in Fig. 2, the P2P navigation
employs a previous traveller(Alice or Bob) to record his/her
trace information (e.g., key turning points) along a path and
share it with followers(Claire or David) for navigation. The
idea is inspired by two fronts. First, people have widely
resorted to non-technical solutions through nature navigation
descriptions from others or landmarks in surroundings in
daily life. It is demonstrated that people are able to navigate
themselves to the destinations if provided timely hints, e.g., to
take a turn or go upstairs. Second, P2P architecture has been
extensively adopted in computer networks where participants
(a.k.a peers) voluntarily offer to provide their own resources
available to other peers without the need of a central server.
Applying a similar thinking in navigation, P2P navigation
enables self-motivated users who have travelled through a path
to act as leaders, i.e., recording and sharing specific trace
information to navigate potential followers. Several pioneer
works have conditionally carried out the leader-follower mode
for navigation [8], [9]. Such P2P mode advances especially in
social and personal scenarios, where, for example, a group of
users arrive successively for an appointment at a specific place
or a vendor desires to direct customers to his own shop.

Translating the idea into practice, we design ppNav, a Peer-
to-Peer indoor Navigation system for smartphones. In ppNav,
a leader records trace information along his travel along a
path to a specific destination. Such information, including
location specific features such as WiFi measurements and
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Fig. 1.

user walking events of interests (e.g., headings, turning, going
upstairs/downstairs), are fused to form a reference trace that
will be later shared to other followers for guidance. When a
follower arrives at the same building and demands an identical
destination place, ppNav first directs him/her to lock on a
certain point (typically yet not necessarily the same starting
point as one leader’s) that connects to the leader-provided
reference trace. From then on, ppNav continuously measures
the navigation trace information and synchronizes the walking
progress with the reference trace. Accordingly, ppNav nav-
igates the follower to the destination by promoting timely
walking hints (such as directions and turns) at appropriate
locations.

ppNav enables P2P navigation on smartphones without
resorting to any pre-deployed services or precise maps, but its
realization entails particular challenges. (1) We expect ppNav
to alert users timely and properly by providing correct walking
hints at the right time and locations. Without comprehensive
localization services, however, we are unable to obtain precise
location estimations. Thus given the environmental dynamics
and the diversity of devices and walking speeds, how to accu-
rately synchronize the follower’s walking progress against the
leader’s reference trace turns into the first important problem
to address. (2) As users may visit a specific destination from
different starting positions, a friendly navigation system should
intelligently lead users to splice the closest reference trace
before the trace-driven navigation can come into operation.
Since the leader’s reference trace only covers the sampled path
and we have neither the knowledge of other unknown areas
nor the user’s precise locations, how to guide a user to lock on
a path connected to a reference trace arises as a key issue for
practical uses of P2P navigation. (3) Incorrect and untimely
direction hints both lead to wrong paths for a follower. As we
only have the knowledge of the sampled path, ppNav should
be able to responsively detect the deviation once a follower
has walked off a reference path.

To overcome the challenges, we devise several novel tech-
niques. First we propose a novel concept of fingerprint
engram, termed as fingeram, which represents a diagrammed
form of sequential WiFi fingerprint measurements along a
path. We adopt WiFi signals as the basic vehicle due to its
ubiquitous availability worldwide. Although WiFi fingerprints
are known to be vulnerable to environment dynamics and
only produce ordinary location accuracy for indoor local-
ization, we observe that fingeram holds nice properties for
precise trace synchronization. As shown in Fig. 1, being
the diagrammed form of a sequence of fingerprints, certain
features of fingeram remain stable in regards to contraction
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Fingerams of the same trace with (a) normal, (b) lower, (c) higher sampling frequency and (d) measurement noises.

or amplification (caused by different WiFi sample frequency
and walking speeds) and noises (induced by environment
dynamics and device heterogeneity). We extract both radio
and visual features for trace synchronization and deviation
detection. Diving into the spatial propagation characteristics
of WiFi signals, we further develop a rotation-based direction
finding approach to guide a user to a closest starting location.

Unifying the above techniques together, we implement
ppNav on Android platform. We conduct extensive experi-
ments in multiple real-world scenarios. Experimental results
demonstrate that ppNav yields a 90 percentile spatial error of
1.6m and an average error of 0.9m for follower tracking and
detects deviations timely within 4.5s (9 samples at 2Hz).

In a nutshell, our core contributions are as follows.

« First we specify the Peer-to-Peer navigation model and
propose a systematic design ppNav that achieves navi-
gation on smartphones without pre-deployed localization
services or even the knowledge of exhaustive indoor
maps. In addition, we also envision such easy-to-deploy
system as a complementation to outdoor navigation as
well as an alternative to progressively crowdsoucing
routing data for common localization services.

« Second, we propose fingeram, a novel diagrammed form
of sequential WiFi fingerprints, and extract stable features
that are resistant to RSS variations caused by diverse
users, heterogeneous devices and environmental dynam-
ics. We believe the fingeram can also benefit conventional
fingerprint-based localization and other RSS-based appli-
cations.

« Finally, we implement ppNav on commodity smartphones
and evaluate it in multiple modern buildings. The results
demonstrate delightful performance of ppNav for every-
day navigation.

The subsequent sections begin with the motivations and
challenges, followed by a brief overview and the definition of
fingeram. The detailed design, implementation and evaluation
of ppNav is then presented. And finally we discuss some open
issues, review related work and conclude this work.

II. MOTIVATIONS AND CHALLENGES
A. Model Description

In everyday life, users urge for effective navigation in many
scenarios. For example, a shop owner would like to deploy a
self-owned navigation service to direct a customer to his shop.
In contrast, a customer also demands for a navigation service
to visit a specific shop in gigantic malls. A meeting coordinator
would like to guide other participants smoothly all the way to
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Fig. 2. A usage example of ppNav.

the gathering place, while one may need a navigation service
to help reach a specific appointment location. Furthermore,
when a driver parks his car in a large lot and go shopping,
a friendly guidance to find his car when he finishes shopping
would save much boresome time and thus largely improve the
quality of shopping experience.

Due to the lack of pre-deployed comprehensive localization
services and precise indoor maps, most of previous navigation
based on accurate locations are infeasible for such scenarios.
In this work, we attempt to develop an alternative model
that does not rely on pre-installed location services and
knowledge of indoor maps. Note that in above scenarios,
multiple users will traverse the same path. Thus our key
idea is nothing more than to leverage the experience of
previous travellers, just as we naturally behave in routine
life. Specifically, we collect specific trace data from previous
travellers and extract appropriate walking hints to navigate
others. Every user travelled a path could act as a leader for that
path by recording trace information and sharing with others.
And one could participate as either a leader or a follower,
depending on the specific scenario. The leader and follower
could even be the same person in case that one travels a path
for multiple times. We term such operational model as Peer-
to-Peer navigation, which does not necessarily rely on pre-
deployed services and is very different from most conventional
localization and navigation systems that work in a client/server
mode [1], [10], [11].

B. Usage Examples

As shown in Fig. 2, suppose a meeting is arranged in a room
marked by the red point. The meeting coordinator Alice arrives
earlier at entrance A and walks from there to the meeting place
as indicated by the red arrowed line. One participant Bob, who
is familiar with the place, arrives at entrance B and travels to
the meeting room along the blue arrowed path. To provide
P2P navigation services for other participants, Alice and Bob
could run the ppNav App during their own walk and generate
a corresponding reference trace. Without such services, other
participants who visited the meeting location for the first
time could only get the directions by themselves or ask for
directions step by step from others like property staffs in the
building.

Specifically, during Alice and Bob’s walks, the ppNav App
running on their smartphones measures WiFi fingerprints and
necessary sensor data (including gyroscope, magnetometer,
barometer), which will be automatically processed and packed
into a reference trace. Guiding information, e.g., turning,
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walking upstairs/downstairs, are also recognized and recorded
in the reference trace for subsequent navigation. When other
participant, e.g., David, arrives at the same entrance B with
Bob, ppNav locks on to him at entrance B with Bob’s reference
trace and delivers the reference information provided by Bob
to David. Then ppNav navigates David by estimating the
walking progress, i.e., relative locations to Bob’s reference
trace. Based on the walking progress estimation, relevant
walking hints (e.g., turning) extracted from the reference
trace will be timely promoted on David’s phone. In case a
participant Claire arrives at a different entrance, e.g., C in
Fig. 2, ppNav first directs her to the nearest reference trace,
i.e., the one provided by Alice, and then perform regular
navigation with the reference information from Alice. Similar
data are measured using smartphone during a follower’s walk.

During either leading walks or following walks, users need
not to intentionally hold the smartphone in hand except that
the follower may need to hold the phone in front of the chest
when locking on the path of a reference trace since we make
use of body blockage effects for this purpose. In general, they
merely need to turn on the App and keep it running during a
walk. In addition, the reference traces contributed by Alice and
Bob to their friends for this meeting can be shared via cloud
with the public when authorized. Furthermore, the following
trace of Claire, if no deviation occurs during her walk, can
also be leveraged as a reference trace for others.

Another attractive potential applications of ppNav is self-
navigation for car finding in large indoor parking lots, a well-
known annoying and knotty problem in modern society. When
one user parks his/her car at a specific pool (denoted as P),
he/she can use ppNav to record the trace from P to the
parking lot exit/entrance (denoted as E). Then the recorded
trace information can be used as the reference trace from E to
car pool P (by appropriately reversing it). Later, when he/she
comes back to E, ppNav could navigate him/her back to the
specific pool with the reference trace collected by him/herself.

C. Design Challenges

ppNav only exploits the sensor data (including WiFi mea-
surements and inertial sensory readings) along the pathways.
Instead of accurately locating a user for navigation, we need
to track the follower’s relative locations with respect to the
leader’s reference trace. We adopt WiFi signals as finger-
prints in ppNav thanks to the worldwide availability and easy
accessibility on commodity smartphones. Existing fingerprint-
based localization, even with a complete radio map of the
whole building, yields considerable location errors [12], [13],
e.g., >5m, which easily result in confusions among adjacent
pathways in modern buildings. As we do not sample the whole
building in ppNav, the accuracy would be even worse. Thus
previous localization approaches can not be directly applied
to obtain accurate relative locations in ppNav. Existing tech-
niques also fail to detect deviation when a user veers off the
correct path. Given that the fingerprints observed by different
users differ in sampling frequency, total amount and absolute
RSS values, a new model to utilize WiFi measurements for
precise trace synchronization and deviation detection needs to
be designed.
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Moreover, a friendly navigation system does not assume
all users destined for a specific place start from the same
location. When a follower appears at a position that has not
been travelled by any leader, ppNav first needs to direct him to
lock on a certain path. As we only sampled specific pathways
and most areas are still unexplored, guiding a user from an
unknown position to a reference path is like navigation in
the dark without global knowledge or precise locations. Novel
techniques are needed to shed light on the blinded period
before the trace-driven navigation could take over.

ITII. OVERVIEW
As shown in Fig. 3, ppNav consists of two major parts,
the trace generation part for the leader application and the
navigation part for the followers.

A. Reference Trace Generation

We sample gyroscope, magnetometer and barometer to
detect the guider’s motion events during the trip, such as steps,
turns, going upstairs/downstairs, walking/stop status, etc. Such
motion events, together with a fingeram generated from
sequential WiFi measurements, are shaped into a reference
trace when the guider finishes the travel. The reference trace
can be shared directly to a particular follower or via cloud
with other users.

B. Path Locking-On

As a user may appear at a location that is different from
the starting point of the leader, we need to direct a user to
approach a nearest path that leads to the destination and has
been travelled previously. This module designs a simple yet
effective method for this purpose. Our method searches for
the most likely directions to an estimated target point via easy
cooperation of the follower himself.

C. Walking Progress Estimation

When a user is locked on a reference trace, ppNav navigates
him to the destination by promoting timely motion hints,
according to the synchronous events indicated by the reference
trace. To achieve this, ppNav synchronizes the follower’s
instantaneous trace with the reference one using specific
features extracted from the fingerams.

D. Deviation Detection

This module detects whether a user, after locked on a
reference trace, is still on the correct path, in case that he
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does not follow well, e.g., taking a wrong turn. We propose
a novel effective and efficient deviation detection algorithm
based on fingerprint distance trend.

Note that the reference trace generation module works only
on leaders’ side while some common engines such as motion
event detection and fingeram formation run on both the leader
and follower applications.

IV. FINGERAM SPECIFICATION
A. Definition and Generation

WiFi fingerprint matching yields only limited location esti-
mation accuracy, we observe that sequential fingerprints along
a set of continuous locations (i.e., a path) behave much more
stable. Fingerprint matching using sequential or just multi-
ple fingerprints has been demonstrated to improve location
accuracy [5], [12], [14]. Since our core task is to synchronize
the reference trace and the following one, we naturally adopt
sequential fingerprints observed along the path rather than
discrete fingerprints of individual locations.

Trace synchronization based on sequential fingerprints is
non-trivial. Walking along an identical path with the same
starting and ending points, different users can observe different
fingerprint sequences due to diverse behaviors and hardware
capabilities. As a result, raw fingerprints of different traces
could not match each other well. Inspired by advanced image
processing techniques [15], [16], we propose to diagram
the sequential WiFi fingerprints into a visual image and
incorporate image-related features for matching. We term the
diagrammed sequential fingerprints as fingeram thanks to its
connotations of fingerprint diagram in addition to fingerprint
engram. The former phrase depicts our core novelty in trace
synchronization via fingerprint matching with both radio and
visual features. The later embodies the key idea of ppNav to
reuse the indications left behind by previous travellers as the
term engram means a memory trace stored as biophysical or
biochemical changes in the brain.

The fingerprint sequence of a trace can be represented as a
matrix F = [f%/],,.,, where each column corresponds one
fingerprint, f®/) indicates the RSS value of the ith AP in
the jth fingerprint measurement, m is the total amount of
observed APs and # is the number of samples during the trace.
To transform a fingerprint sequence into a fingeram, we map
the RSS matrix into an 8-bit grayscale image, which results
in a visual form of the fingerprint sequence. Without loss of
generality, we still use F to denote the diagrammed fingeram.
Fig. 1a shows an illustrative example of fingeram, where one
pixel corresponds an RSS value in the matrix of fingerprint
sequence. Note that the AP order affects the image patterns
of fingeram but does not pose an issue since the order, once
determined, is unchanged throughout the navigation.

Compared to the naive fingerprint sequence [5], the unique
advantages of fingeram lie on two fronts. First, although the
absolute RSS fingerprints differ from leader’s trace to the
follower’s, certain trends may keep stable for a sequence of fin-
gerprints along a spatial path. For example, despite of absolute
RSS variations, the RSS trend of each AP along a specific
path keeps relatively consistent [7]. Second, the fingerprints,
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when appropriately visualized, also enjoys graceful image
attributes, e.g., different images with similar visual pattern
but different sizes, scales, and resolutions could be accurately
matched [15], [16]. Recall Fig. 1, although fingerprint
sequences along the same path may vary due to various distor-
tions such as lower/higher sampling frequency and measure-
ment noises, which result in contracted, amplified and stained
images respectively, the internal patterns of corresponding
fingeram remain unchanged. These underpin the feasibility of
trace synchronization via fingeram matching and encourage us
to extract signal-based radio features and image-based visual
features to serve trace-driven navigation.

B. Radio Features

As a visual version of sequential fingerprints, fingeram
contains internal radio features that keeps stable over different
traces along path. Specifically, the RSS changing trend is
observed to be relatively stable along a specific path [7], [9].
Taking Fig. 4 as an example, suppose a user walks along the
pathway. When he walks towards and then away from an AP,
the corresponding RSS values may first increase and then
decrease, resulting in the trend with a peak. Despite of diverse
devices and walking speeds, different users would observe
such a similar trend along the same path. Generally, the peak
of an AP appears at the closest location on the path to that AP
and thus turns out to be a spatially stable marker for a path.

As shown in Fig. 5, the location offsets of the RSS peaks
observed by different users are limited within 3.7 meters, while
the RSS differences can be as large as 10 dBm. In addition,
one would encounter multiple RSS peaks from different APs
within a path. Thus RSS peaks of all APs observed within
a trace, which we term as radio markers hereafter, turn out
to be effective alignment anchors for trace synchronization.
As shown in Fig. 6, consistent radio markers can be detected
from the fingerams of the reference trace, even though they
are distorted in lengths and noises.
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C. Visual Features

In addition to the inherent radio features, fingeram also
shares wonderful advantages of visual images. Various image
matching techniques can be utilized for fingeram align-
ment [15], [16]. In practice, many factors impact the quality
of generated fingerams. For example, different device gains
lead to biased RSS observations, resulting in fingerams with
diverse brightness. In addition, different sampling frequencies
and different walking speeds both result in fingerams of
different sizes. Yet we argue that certain features constrained
by AP distribution and space geometry may keep unchanged
under these distortions. Therefore, we can seek distinctive
image features and efficient matching methods that are robust
to changes in images scale, illumination and noises for precise
fingeram alignment.

Specifically, we adopt SURF (Speeded Up Robust
Features) [15], a widely used feature detector that can be
used for object recognition, registration and classification in
computer vision. SURF detects points of interests, usually on
high-contrast regions on an image, as “feature descriptors”
of the image that are detectable under distortions. Similar
features will be identified and matched from other images
as long as they preserve similar patterns or contain the same
objects. In ppNav, we observe that for fingerams along the
same path, the relative positions between a portion of such key
points would persist and hence provide another dimension of
anchors for fingeram alignment. Similar to radio markers, we
term these image-based anchors as visual markers hereafter.
As shown in Fig. 7, a considerable number of visual markers
can be detected from fingerams, from which we can select
reliable ones for walking progress estimation.

V. ppNav DESIGN
A. Trace Generation

When a user takes a walk along a path destined for a
place, ppNav can automatically construct a reference trace
Jr =< F, E > for that path. Specifically, F is the fingeram of
measured WiFi fingerprints along the path, where each column
corresponds an individual fingerprint. £ marks a series of con-
comitant motion events such as turning and upstairs/downstairs
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extracted from inertial sensor data. Without location infor-
mation, F and E are time-stamped as well as indexed with
WiFi samples relative to the starting points. ppNav involves
common sensors that are available on commodity smartphones
for navigation. Specifically, we employ the following data
as system inputs of ppNav. We measure WiFi observations
as sequential fingerprints for constructing fingeram, which
is used for estimating the follower’s walking progress by
fingeram synchronization. Gyroscope and magnetometer are
used for detection of turning events while barometer is further
leveraged for level-change detection.

As the fingerprints are continuously measured during walk-
ing, we employ a low-pass filter to sift out partial uncertain
noises before converting them into a fingeram. Considering
abundant APs crowded in modern buildings, a portion of low
quality APs that appear few times or always hold extremely
low RSS values are not necessary for fingeram and can
be removed. Specifically, we define a continuous effective
sampling rate ry, defined as follows, to further sift out low-
quality APs.

rs = eg/cs,

where c¢; denotes the max sample amount among all APs
within a trace segment, and e; denotes the amount of detected
samples of current APs. We merely select the APs whose
rs > 0.6 to form fingerams in our scenarios, which would hold
certain RSS trends with high confidence, although they might
still experience missing RSS problem to some extent. We also
remove APs with less than 10 samples within the whole trace,
since they generally do not exhibit effective trends or peaks.

Considering that one or more APs, e.g., personal hotspots,
might appear in the leader’s reference trajectory yet do not
present at all in the follower’s trace (and vice versa), we
only select the common APs existing in both trajectories when
aligning the reference and following traces. There might also
be several APs whose locations change between a pair of
leading and following traces although they are observed in
both traces. The APs may yield radio features with inconsistent
relative positions in a pair of traces and thus influence the
alignment results. Fortunately, such APs are commonly only a
very small portion of detectable APs and we can apply robust
techniques to mitigate their impacts (See Section V-B).

As for motion event detection, various advanced techniques
have been developed and can be used [6], [17]-[19]. Hence
in this section we mainly focus on the navigation design and
leave a brief introduction on motion event detection in the next
section.

B. Walking Progress Estimation

Given a reference trace Jg, we first assume a user arrives
at the same starting position and discuss navigation in such
case.

As mentioned above, the key to provide timely walking
tips is to accurately estimate the follower’s walking progress
relative to the reference trace. In ppNav, we synchronize the
follower’s trace with the reference trace by aligning their
fingerams based on their radio and visual features as specified
in Section IV. Suppose a user is locked on to a reference
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trace Jg =< Fg, Er > and denote his own navigation trace
as Jy =< Fy,Ey >. The trace synchronization problem
is to find an optimal alignment between the two fingerams
Fy = [fli,l’])]mx,w and Frp = [fz(el’j)]man- Formally, the
alignment of the ith sample in Fy and the kth sample in Fp is
represented as follows:

hefD 9,

where fz(\;) and fl(ek) denote the ith (index of latest sample)
and kth column in Fy and Fp, respectively. Since no rotation
is involved in the mapping, there are basically scaling and
translation operations during the alignment. Hence & can be
derived in the form of h(i) = ai 4 /3, where @ and f indicates
the respective scale and translation factors to align Fy to Fg.
Fig. 8 shows an illustration of alignment by fingeram markers
via scaling and shifting. We extract two types of markers, i.e.,
radio markers and visual markers, for the fingeram alignment
thanks to their location stability regarding various distortions.
Radio markers of the same AP are observed at close phys-
ical locations, while visual markers corresponding to similar
pattern generally appear at the same relative locations of a
fingeram.

As shown in Fig. 9, each extracted visual marker v =
(W, vM) corresponds to v™th AP in the v®th sample of
the fingeram. Original SURF algorithm outputs a considerable
number of such markers, which are not all necessary for
alignment since in our case there is no image rotation issue.
For all matched visual markers of two fingerams, we only
need to consider those having the same y-axis coordinate v
(i.e., corresponding to the same AP), which efficiently reduces
the amount of visual markers. Fig. 9 shows an illustrative
example of the visual markers extraction matching results.
For the fingeram of a sequence of 250 fingerprints, SURF
detector can output as many as >200 visual markers, which
can be pruned to around one-fifth. The remained matched
visual markers are denoted as Vy = {VS), vg), S ,Vg\l,%) } and
Vg = {vg), Vg), . ,v%’“)} for the follower’s and the leader’s
trace, respectively.

In addition to visual markers, we also identify radio markers
once they appear (note that they may not be observed within
too few fingerprint samples). Radio markers are recognized by
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identifying potential RSS peaks of an RSS sequence as done
in [7]. Fusing the radio markers contributed by different APs
in the navigation fingeram, we obtain a set of radio markers

Ry = (r0.rQ, . ri) where r®) = (&9, y)) .
a radio marker of the r(k Yth AP and is observed at the

(k Yth sample. Similarly, we can also extract a series of radio

markers of corres?ondmg APs in the reference trace, denoted
as Rp = {r R > r! R > ("’)} Only radio markers of APs that
are observed in both traces will be considered for alignment.

Integrating all markers, we solve the alignment by minimiz-
ing the least square errors as follows via linear regression [20]:

argr(rliﬁn Z( (k,x) h(v(kx))) +z((kx)_h(r(kx)))

(1

To mitigate the influence of abnormal data, caused by
unstable WiFi signals or moving personal hotspots, we employ
a robust linear model (RLM) [20], which uses iteratively
re-weighted least squares with a bisquare weighting func-
tion, instead of the ordinary linear model (OLM). Fig. 12
demonstrates that, with sufficient radio markers, OLM could
evidently mitigate the impacts of abnormal data, which will
be further validated in Section VI.

According to the derived o and 8, we could scale and shift
follower’s trace to map to the reference trace by mapping
function h(i) = ai + f. By doing this, the follower’s latest
sampling index is mapped to a specific index in reference
trace, which is the follower’s walking progress relative to the
reference trace. Then appropriate tips for navigation(e.g. turn
or level change) could be promoted to the follower according
to the motion events indicated in the reference trace.

C. Deviation Detection

In case the follower deviates from the trace, e.g., taking
a wrong turn, we need to intelligently detect whether the
user veers off the path or not and alert the user timely if
yes. An intuitive way to achieve this is applying a threshold
on the optimization errors in Eqn. 1. However, due to the
variant trace lengths and uncertain amounts of markers, a fixed
threshold value does not apply to various scenarios. In ppNav,
we propose a novel algorithm based on fingerprint distance
trend to effectively detect deviation.

Our key observation is that fingerprint similarity roughly
decreases over increased distances. Specifically, if we match
a fingerprint f against a series of nearby fingerprints observed
on its opposite sites along the path, i.e., preceded and posterior
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fingerprints of f, we can obtain a “V”-zone pattern in decrease
even to zero and then increases. As we can precisely estimate
a user’s walking progress if he is on the path, a “V”-like
pattern will be still produced when we compare a fingerprint
of the navigation trace to the sequence of nearby fingerprints
of its aligned fingerprint in the reference trace. In contrast,
fingerprint distances compared to whatever segment of finger-
prints on the reference trace only yields random trends if the
user deviates the path since the fingerprint is distant to any of
those within the reference trace. Inspired by this observation,
we devise novel algorithm to detection user deviation by
identifying and comparing the fingerprint distance profiles.

Suppose the latest fingerprint observed by the follower
is £® which is mapped to a fingerprint f&) in the ref-
erence trace sampled at k' = h(k). C0n51der1ng respective
d fingerprints preceded and posterior to fl(e " on the reference
trace, we can derive a fingerprint distance profile for £ ® using
Euclidean distance as follows:

o (1. 1) =y )

which results in a distance profile Py of 2d 4+ 1 items.
Note that we only take common APs that appear in both
traces into account and typically d < 10 fingerprints are
sufficient, as demonstrated by our experiments. Similarly,
we can calculate a profile for fl(ek ), which is supposed to be

k/ k/ .
[BEE), £y,

£ i e—d.dl, @)

the aligned fingerprint with f (k), as Pr =
i €[—d,d]}.

We conduct preliminary measurements to validate our
observations. As shown in Fig. 10, suppose the reference
trace should be “A-B-C-D-E-F-G-H-1”, but the follower turns
mistakenly at point A and takes a trace as “A-J-K-L-M-N-
O-P-Q”. We calculate the distance profile Py and Pgr for
each fingerprint sample during the trace from A to 1. The
results are depicted in order in Fig. 11. As seen, when
the user does not deviate away, both Py and Ppr exhibit
apparent V-pattern, although slight distortions are observed
on Py due to environmental dynamics and device diversity.
While the graceful shape of Pr consistently holds (actually
for any sample), Py suffers significant deformation as the
user veers off the path. Thus by examining the profile shapes
of Py to Pgr, we can confidently identify whether the user
deviates from the destined path.

Instead of directly evaluating the absolute Py distribution,
we attempt to compare Py to Pr for deviation detection in
purpose of achieving adaptivity to various scenarios. Specif-
ically, we model the “V”-like distribution as a parabola and
apply quadratic model y = a(x — b)? + ¢ to fit the profiles
and examine the similarity between them. As shown in Fig. 11,
we mainly concern coefficient a that embodies the curvature of
the output parabola to compare the coupled distance profiles.
Concretely, we devise a relative metric for this purpose:

. a
a=-", 3)

ag
where ay and ap denote the estimation parameters of
Py and Pg, respectively. Larger a indicates more similar
profiles and vice versa. We then apply a threshold-based

method to detect a deviation by examining the estimated
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a of successive three samples. According to our experiments,
we set the threshold of a as 0.6 which balances the detection
rate and delay.

D. Path Locking-On

Previously we simply assume that a follower is locked on
to the same entrance of a reference trace, which, however,
is not guaranteed in practice. Recall Fig. 2, a user could
arrive at different entrances. In such case, ppNav should
direct him to the nearest path covered with at least one
reference trace. Without pre-deployed location service and
global map knowledge, the task is very difficult to navigate
in the unexplored dark area. Previous works [8], [9] merely
omits this problem and assumes followers will appear at the
same entrance with the leader.

If a user is outside the building, he can navigate to a certain
entrance using GPS service, which, however, will be no longer
applicable when he has entered the building. We address
this challenge in ppNav by exploring and exploiting the
characteristics of AP space. The task is divided into two parts:
First, we search for a locking-on point on the nearest reference
trace. And second, find a direction towards the targeted point
and direct the user there.

In ppNav, we seek the closest locking-on point as starting
position to save locking-on costs. We observe that closer

locations usually observe more common APs. Thus we induce
an intuitive metric of common AP amounts to select the
point that shares the most common APs with the user’s
current location as the targeted starting point. As shown in
Fig. 13a, we compare the fingerprint measured at the user’s
current location to all fingerprints within a reference trace
and depict the common AP amounts. As seen, the point that
reports the highest common AP amount is pretty close to the
spatially nearest point, with only an offset of 6 samples (about
3 meters). Although the targeted point selected in this way is
not always the closest one, it is acceptable for a follower to
take a slightly long walk for initial location.

Once a targeted position is selected, we attempt to guide
a user to there with the least efforts and without external
location services or map information. The key insight to find
the right direction towards targeted starting point is to leverage
signal blockage of human body itself, as inspired by [21].
Specifically, when a user turns a circle with his phone, he may
observe stronger RSS when facing a certain AP and lower RSS
when he turns his back to it. Such phenomenon is leveraged
in [21] to find the direction of an AP. In ppNav, we extend
to multiple APs for direction finding between two distant
locations.

Fig. 13 demonstrates an illustrative scenario where the user
can easily navigate to the targeted starting point with not
complex intervention. As shown in Fig. 13b, suppose the user
is currently at L¢ and the targeted point is L. We ask the user
to turn a circle with a relatively slow speed, with the phone in
front of the chest, and record a series of RSSs for each AP. To
mitigate the RSS gains brought by device diversity, we only
remain those APs that are also observable at L7, yet with
RSS values consistently lower than those measured at L.
Then for each remained AP, we can estimate its direction 6,
which is roughly the direction that observes the strongest RSS
(when the user is facing the AP), and direction 8,,, which is the
opposite to the direction that observes the weakest RSS (when
the user is backing to the AP) within the circle (Fig. 13c). Note
that we do not use the APs whose observed RSS values during
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Fig. 14. Experiment environments in (a) academic building and (b) office building.

the turning at L¢ are consistently higher than those at Lr,
because these APs may lead to wrong direction estimations
if they are located between Lc and L7. Suppose there are
k APs involved and the ith AP is in direction ). The forward
direction of the user is then derived by synthesizing all these
directions as follows.

=1
0= “)

=1

Zk:(g(i)’
i=1

where 00 = 0 + 0{7)/2 for robustness.

Given an estimated forwarding direction, the user may need
to judge the path by himself in the uncharted area before he
is locked on. We request the user to iteratively turn a circle to
refine the direction, especially when he encounters a crossing
or a wall. To determine whether the user is on the path or not,
we successively calculate the fingerprint similarity, which is
supposed to increase when the user get closer to the path and
decrease in contrast, as we have done in the deviation detection
module. Hence the point from which the fingerprint similarity
starts decreasing from an increasing trend is probably the
targeted location where the user gets on the path.

VI. IMPLEMENTATION AND EXPERIMENTS
A. Experimental Setup

To evaluate ppNav, we build a prototype on commodity
smartphones (Google Nexus 5 and Nexus 7) running Android
platform. We conduct experiments in both (I) an academic
building with a testing area of 68000m?2 and (II) an office
building with an area of 11000m?, as shown in Fig. 14.

We recruit four volunteers to participate in our experiments.
As shown in Fig. 14, we let the leader travel along the path
“A—F” and “G— A” as the reference trace in both area. Then

we employ three followers to walk long the trace with timely
tips by ppNav. Specifically, the followers are not informed of
the destination and the exact start-point. We let the follower
start from “H” if the leader start from “A”, and let the follower
start from “E” if the leader start from “G” accordingly. The
users naturally hold their smartphones in hand during walking.

B. Performance of Motion Event Detection

1) Turning Detection: To detect turning events and cap-
ture the rotating angle, we employ both magnetometer and
gyroscope, which reports the absolute angles and the angular
velocity respectively [22], [23]. We acquire the ground truth
turning angles from the floor plans. To extensively understand
the turning angle estimation error and turning detection delay,
we let users manually tag checkpoints at each turning’s starting
and ending moments. With such results, the turning hints
for a follower should be notified several seconds before the
synchronized position of the turning starting events. As shown
in Fig. 16, ppNav achieves great performance in turning
angle estimation with a 90 percentile error of 18°, which is
sufficient enough for turning detection since a turning angle
in real buildings is in general greater than 45°. According to
our experiments, turning events typically last for a duration
of 2.75s. Fig. 17 illustrates the performance of detecting
turning position (i.e., turning start points). As seen, ppNav
identifies 90% of turning events in 0.5s after turning starts,
which means that the average spatial shift is 0.5m, assuming
a natural walking speed of 1m/s.

2) Level-Change Detection: To detect level changes, i.e.,
going upstairs/downstairs events, we employ the barometer
sensor to read the atmospheric pressure data. As shown in
Fig. 15, the pressure values within the same level are relatively
stable (with a maximum variation of 10Pa as measured in
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our experiments), yet vary significantly over different floors
(with a minimum different between adjacent floors of 44Pa).
Thus it is feasible to perform a threshold-based method to
detect the level changes [24]. As a level-change event would
typically last for a short period, we claim an event (i.e.,
the starting of a level change) when the pressure changes
for over 12Pa and confirm the event (i.e., the starting of a
level change) when the pressure varies over 40Pa. We collect
5 traces of going upstairs and downstairs in both experimental
buildings, which contain 60 level-change events in total. In our
experiments, we successfully detect all upstairs/downstairs
events with a sliding window of around 8 seconds. The
sliding window may cause certain delays, but does not affect
the navigation performance since the level-change detection
module only runs in reference trace generation part.

C. Performance of Trace Synchronization

As ordinary linear model (OLM) is sensitive to outliers
caused by interferences such as fragile WiFi signals, we
leverage a robust linear model(RLM) to mitigate the effects
of noises, which uses iteratively reweighted least squares
method [20] to find the maximum likelihood estimates.

To evaluate the performance of trace synchronization in
term of physical space errors, we let leaders and followers
manually mark a set of checkpoints along the paths as ground
truth. Specifically, we set in total 41 and 20 checkpoints on
each pathway in area I and area II, respectively. As shown
in Fig. 18, RLM remarkably outperforms OLM, yielding
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an average alignment error of 0.9m and a 90%ile error of
1.6m. For comparison, the average and 90 percentile errors
of OLM are 1.7m and 4.3m, respectively. Although RLM
produces relatively higher computation costs, we need to
perform regression only once and can reserve the regression
coefficients for subsequent alignments during the same trace,
since the speed differences and starting point offsets between
the leader and follower are relatively stable for a specific pair
of navigation trace and reference trace.

In addition, we particularly test errors of fingeram alignment
for the turning points B,C,D,E in both area I and II, which
are critical to navigation quality. As shown in Fig. 20, the
errors are all under 2.5m and decrease gradually with respect
to increasing walking distances. This is because that longer
trace yields more fingeram markers, which may lead to more
robust trace alignment. The reason that the alignment errors
of the turning points are larger than the average ones over
the whole trace is that turning detection errors further cause
location offsets, which are included in the alignment errors.

We further evaluate the effects of individual type of markers
for trace alignment using the same trace data. Fig. 19 shows
the performance of fingeram alignment under three settings:
radio markers only, visual markers only, and radio markers and
visual markers. As seen, while either type of markers results in
considerable accuracy, accounting for both markers yield the
best performance. Specifically, the maximum error is limited
by 2.1m, while the average error is about 0.9m.
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D. Performance of Deviation Detection

Now we evaluate the delay of deviation detection. As devia-
tions usually appear in intersections, we set purposed deviation
point at a special intersection of each pathway (point D
in both experimental area I and II) and let users mark on
smartphone actively when passing the points for ground truth.
Fig. 21 depicts the precision and recall of deviation detection
on 50 pairs of normal following traces and 50 pairs of
deviated traces with different threshold values. The results
show that any threshold within the range of [0.50, 0.64]
yields considerable precision and recall on detection. Fig. 22
plots the delay distributions of deviation detection using these
threshold values. As seen, the delays in all cases within
different thresholds are all less than 10 samples. Larger
thresholds result in smaller delay in detection, yet yields more
false alarms. In contrast, smaller threshold values achieves
more robust deviation alert, yet lead to larger delay. In our
experiments, we adopt an intermediate value of 0.6, which
produces balance performance in detection rate (precision of
93% and recall of 92%) and detection delay (with an average
delay of 5.6 samples). Considering a typical WiFi sampling
frequency of 2Hz and an average walking speed of 1.0m/s,
the results equivalently indicate that we could detect deviations
within a maximum delay of 4.5s in time and 4.5m in physical
distance.

E. Performance of Lock On Direction

To evaluate accuracy of path locking-on, we let followers
rotate and move for locking on estimated direction with an
interval of 3m. The users spin around slowly (18°/s) at each
stop with smartphone in front of body. We first evaluate the
accuracy of finding a locking-on points at different distances
by calculating the location errors between the physical closest
point on the reference path and the target points estimated at
different distances, from 33m to 3m. As shown in Fig. 23,
the estimation errors decreased when the user gets closer to
the path. Note that results in area II are in average better
than those in area I, which is because narrower corridors in
area II result in severer changes in amounts of common APs.
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Fig. 24 shows the direction errors for the targeted points
determined at a distance of 33m. The average accuracy over
all distances is about 29.5°, which is sufficient for direction
guiding in practice since two adjacent pathways are usually
90° connected. In addition, as can be seen, the direction errors
first decrease and then increase again when the user iteratively
spins and gets closer to the targeted points. The reason is that
few common APs are available when the user is too far and no
notable RSS difference would be observed if he is too close.

VII. DISCUSSION
A. Initial Locking-On

If the user is too far away from any reference traces,
ppNav fails to guide him to a close path since perhaps no
common AP would be observed at the user’s location and
any point on the reference trace. Nevertheless, if we gather
sufficient leaders’ traces that cover a certain part of the
building pathways, such case will be efficiently avoided.

B. Quality of Traces

Although ppNav does not exert any constraints to partici-
pants during walking, arbitrary user behaviors, e.g., stop-and-
go and scurrying from side to side, will impair the quality
of the gathered trace information. Thus to record only the
trace information along a path when the user is walking,
we could employ inertial sensors (e.g., accelerometer) to detect
the walking status of the user. In practice, when a user offers
to provide hints for his friend, he will general try the best to
provide good quality information. In case of sharing reference
trace among strangers, quality control and privacy protection
mechanisms need to be developed in the future.

C. Energy Consumption

ppNav calls WiFi interface that generally consumes more
energy than the low-power inertial sensors. Yet we argue the
power consumption is affordable because the ppNav appli-
cation only runs during navigation, which usually will not be
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too long. In addition, compared to computation-hungry vision-
based approach [9], our design is actually significantly more
energy efficient.

D. Evolving to Generic Navigation Services

ppNav can be extended to progressively construct a generic
navigation services by gathering sufficient reference traces
and devising effective techniques to splice them to form an
accessible roadmap. To achieve this, we need to design path
planning algorithms to find the shortest path for friendly
navigation [9].

VIII. RELATED WORKS

Indoor localization and navigation have been extensively
studied in recent years. Many systems achieve precise location
estimation using dedicated hardware such as infrared [25],
ultrasound sensors [26], RFID [11], etc. Various approaches
have been proposed to leverage the pervasive WiFi infrastruc-
ture for localization based on either ranging [27], [28] or
fingerprinting [1], [12], [14], [29]-[32]. Other ubiquitously
available radio signals such as FM [33], GSM [3] are also
exploited as fingerprints. Thanks to the prosperity of mobile
sensing, location fingerprints are recently further extended to
magnetism [34], sound [4], [35], and multi-modal ambient fea-
tures [14]. These systems either rely on specialized hardware
or require labor-intensive site survey for deployment.

Traditional WiFi fingerprint-based localization for smart-
phones, even with a complete radio map of the whole building,
usually yields considerable location errors [13], e.g., >5m,
which is not sufficient for navigation. Recent advances
improve the accuracy significantly by leveraging acoustic
ranging [12] or image matching [14]. Recently decimeter-
level localization methods have been proposed by leveraging
the physical layer Channel State Information (CSI) [36] or
specially modulated signals, such as Wideo [37], Widar [38],
SpotFi [39], Chronos [40] etc. These works, however, rely
on CSI that is only available on specific networks interface
cards (e.g., Intel 5300) with firmware modifications and is not
accessible on commercial smartphones.

Many crowdsourcing-based schemes have been proposed to
reduce deployment costs of indoor localization systems by
distributing the fingerprint calibration task to a large number of
participatory users [5], [10], [19], [41]. While facilitating the
deployment stage, these works usually assume the availability
of precise indoor maps, which, however, are difficult to obtain
in practice. Some researchers explore to incorporate inertial
sensing and crowdsourcing to construct indoor floorplans
for indoor localization and navigation [6], [7], [19], [42].
Appropriate mechanisms need to be designed to guarantee
the precision of resulted maps as well as encourage user
participation [43], [44]. Different from traditional navigation
services, ppNav is an easy-to-deploy system that do not depend
on pre-deployed comprehensive location services and precise
digital maps.

The leader-follower mode has been referenced in sev-
eral recent systems [8], [9], [34]. Reference [34] navigates
blind users using customized device for magnetic sensing.
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Two recent systems, Travi-Navi [9] and FOLLOWME [8],
both employ trace-driven navigation on smartphones. Travi-
Navi synthesizes vision, WiFi and other inertial information
to enable a user to easily bootstrap navigation services with-
out infrastructure support. FOLLOWME exploits magnetic
sensing and dead-reckoning to achieve last-mile navigation
for smartphone users. The design of ppNav is inspired by
these systems, but is very different from several aspects. First,
both the two systems assume that followers will arrive at the
same entrance with previous leaders, which is not realistic
in practice. In contrast, ppNav can direct a user to lock
on a closest path from a random start point. Second, while
vision-based Travi-Navi provide intuitive tips for followers,
the image quality is easily impaired by human motions and
lighting conditions. To overcome this, users may need to
hold smartphone vertically and steadily during walking. ppNav
minimizes the cooperation efforts for path locking-on and does
not exert any constraints during navigation. Finally, although
both Travi-Navi and ppNav exploit WiFi measurements,we
exploit sequential fingerprints in a novel diagrammed form,
which is demonstrated to be more efficient and could further
benefit various other WiFi-based applications, such as indoor
localization, frequent trajectory mining, location-based AP
access control, etc.

IX. CONCLUSION

In this paper, we present ppNav, a Peer-to-Peer navigation
system for smartphones, which enables efficient navigation
without resorting to pre-deployed location service or the
availability of indoor maps. ppNav employs a previous trav-
eller to record the trace information along a path and share
them with later users for navigation. We implement ppNav
on commercial phones and validate its performance via real
experiments. In addition to a fast-to-deploy navigation service,
we envision and intend to extend ppNav as an alternative
way to progressively crowdsource data for generic localization
systems.
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